HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem7 Structured version   Unicode version

Theorem cnlnadjlem7 26864
Description: Lemma for cnlnadji 26867. Helper lemma to show that  F is continuous. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1  |-  T  e. 
LinOp
cnlnadjlem.2  |-  T  e. 
ConOp
cnlnadjlem.3  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
cnlnadjlem.4  |-  B  =  ( iota_ w  e.  ~H  A. v  e.  ~H  (
( T `  v
)  .ih  y )  =  ( v  .ih  w ) )
cnlnadjlem.5  |-  F  =  ( y  e.  ~H  |->  B )
Assertion
Ref Expression
cnlnadjlem7  |-  ( A  e.  ~H  ->  ( normh `  ( F `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Distinct variable groups:    v, g, w, y, A    w, F    T, g, v, w, y   
v, G, w
Allowed substitution hints:    B( y, w, v, g)    F( y, v, g)    G( y, g)

Proof of Theorem cnlnadjlem7
StepHypRef Expression
1 breq1 4440 . 2  |-  ( (
normh `  ( F `  A ) )  =  0  ->  ( ( normh `  ( F `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) )  <->  0  <_  ( ( normop `  T )  x.  ( normh `  A )
) ) )
2 cnlnadjlem.1 . . . . . . . . . 10  |-  T  e. 
LinOp
3 cnlnadjlem.2 . . . . . . . . . 10  |-  T  e. 
ConOp
4 cnlnadjlem.3 . . . . . . . . . 10  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
5 cnlnadjlem.4 . . . . . . . . . 10  |-  B  =  ( iota_ w  e.  ~H  A. v  e.  ~H  (
( T `  v
)  .ih  y )  =  ( v  .ih  w ) )
6 cnlnadjlem.5 . . . . . . . . . 10  |-  F  =  ( y  e.  ~H  |->  B )
72, 3, 4, 5, 6cnlnadjlem4 26861 . . . . . . . . 9  |-  ( A  e.  ~H  ->  ( F `  A )  e.  ~H )
82lnopfi 26760 . . . . . . . . . 10  |-  T : ~H
--> ~H
98ffvelrni 6015 . . . . . . . . 9  |-  ( ( F `  A )  e.  ~H  ->  ( T `  ( F `  A ) )  e. 
~H )
107, 9syl 16 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( T `  ( F `  A ) )  e. 
~H )
11 hicl 25869 . . . . . . . 8  |-  ( ( ( T `  ( F `  A )
)  e.  ~H  /\  A  e.  ~H )  ->  ( ( T `  ( F `  A ) )  .ih  A )  e.  CC )
1210, 11mpancom 669 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( T `  ( F `  A )
)  .ih  A )  e.  CC )
1312abscld 13246 . . . . . 6  |-  ( A  e.  ~H  ->  ( abs `  ( ( T `
 ( F `  A ) )  .ih  A ) )  e.  RR )
14 normcl 25914 . . . . . . . 8  |-  ( ( T `  ( F `
 A ) )  e.  ~H  ->  ( normh `  ( T `  ( F `  A ) ) )  e.  RR )
1510, 14syl 16 . . . . . . 7  |-  ( A  e.  ~H  ->  ( normh `  ( T `  ( F `  A ) ) )  e.  RR )
16 normcl 25914 . . . . . . 7  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  RR )
1715, 16remulcld 9627 . . . . . 6  |-  ( A  e.  ~H  ->  (
( normh `  ( T `  ( F `  A
) ) )  x.  ( normh `  A )
)  e.  RR )
182, 3nmcopexi 26818 . . . . . . . 8  |-  ( normop `  T )  e.  RR
19 normcl 25914 . . . . . . . . 9  |-  ( ( F `  A )  e.  ~H  ->  ( normh `  ( F `  A ) )  e.  RR )
207, 19syl 16 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( F `  A ) )  e.  RR )
21 remulcl 9580 . . . . . . . 8  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  ( F `  A
) )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  ( F `  A ) ) )  e.  RR )
2218, 20, 21sylancr 663 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  ( F `  A ) ) )  e.  RR )
2322, 16remulcld 9627 . . . . . 6  |-  ( A  e.  ~H  ->  (
( ( normop `  T
)  x.  ( normh `  ( F `  A
) ) )  x.  ( normh `  A )
)  e.  RR )
24 bcs 25970 . . . . . . 7  |-  ( ( ( T `  ( F `  A )
)  e.  ~H  /\  A  e.  ~H )  ->  ( abs `  (
( T `  ( F `  A )
)  .ih  A )
)  <_  ( ( normh `  ( T `  ( F `  A ) ) )  x.  ( normh `  A ) ) )
2510, 24mpancom 669 . . . . . 6  |-  ( A  e.  ~H  ->  ( abs `  ( ( T `
 ( F `  A ) )  .ih  A ) )  <_  (
( normh `  ( T `  ( F `  A
) ) )  x.  ( normh `  A )
) )
26 normge0 25915 . . . . . . 7  |-  ( A  e.  ~H  ->  0  <_  ( normh `  A )
)
272, 3nmcoplbi 26819 . . . . . . . 8  |-  ( ( F `  A )  e.  ~H  ->  ( normh `  ( T `  ( F `  A ) ) )  <_  (
( normop `  T )  x.  ( normh `  ( F `  A ) ) ) )
287, 27syl 16 . . . . . . 7  |-  ( A  e.  ~H  ->  ( normh `  ( T `  ( F `  A ) ) )  <_  (
( normop `  T )  x.  ( normh `  ( F `  A ) ) ) )
2915, 22, 16, 26, 28lemul1ad 10491 . . . . . 6  |-  ( A  e.  ~H  ->  (
( normh `  ( T `  ( F `  A
) ) )  x.  ( normh `  A )
)  <_  ( (
( normop `  T )  x.  ( normh `  ( F `  A ) ) )  x.  ( normh `  A
) ) )
3013, 17, 23, 25, 29letrd 9742 . . . . 5  |-  ( A  e.  ~H  ->  ( abs `  ( ( T `
 ( F `  A ) )  .ih  A ) )  <_  (
( ( normop `  T
)  x.  ( normh `  ( F `  A
) ) )  x.  ( normh `  A )
) )
312, 3, 4, 5, 6cnlnadjlem5 26862 . . . . . . . 8  |-  ( ( A  e.  ~H  /\  ( F `  A )  e.  ~H )  -> 
( ( T `  ( F `  A ) )  .ih  A )  =  ( ( F `
 A )  .ih  ( F `  A ) ) )
327, 31mpdan 668 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( T `  ( F `  A )
)  .ih  A )  =  ( ( F `
 A )  .ih  ( F `  A ) ) )
3332fveq2d 5860 . . . . . 6  |-  ( A  e.  ~H  ->  ( abs `  ( ( T `
 ( F `  A ) )  .ih  A ) )  =  ( abs `  ( ( F `  A ) 
.ih  ( F `  A ) ) ) )
34 hiidrcl 25884 . . . . . . . 8  |-  ( ( F `  A )  e.  ~H  ->  (
( F `  A
)  .ih  ( F `  A ) )  e.  RR )
357, 34syl 16 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( F `  A
)  .ih  ( F `  A ) )  e.  RR )
36 hiidge0 25887 . . . . . . . 8  |-  ( ( F `  A )  e.  ~H  ->  0  <_  ( ( F `  A )  .ih  ( F `  A )
) )
377, 36syl 16 . . . . . . 7  |-  ( A  e.  ~H  ->  0  <_  ( ( F `  A )  .ih  ( F `  A )
) )
3835, 37absidd 13233 . . . . . 6  |-  ( A  e.  ~H  ->  ( abs `  ( ( F `
 A )  .ih  ( F `  A ) ) )  =  ( ( F `  A
)  .ih  ( F `  A ) ) )
39 normsq 25923 . . . . . . . 8  |-  ( ( F `  A )  e.  ~H  ->  (
( normh `  ( F `  A ) ) ^
2 )  =  ( ( F `  A
)  .ih  ( F `  A ) ) )
407, 39syl 16 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normh `  ( F `  A ) ) ^
2 )  =  ( ( F `  A
)  .ih  ( F `  A ) ) )
4120recnd 9625 . . . . . . . 8  |-  ( A  e.  ~H  ->  ( normh `  ( F `  A ) )  e.  CC )
4241sqvald 12286 . . . . . . 7  |-  ( A  e.  ~H  ->  (
( normh `  ( F `  A ) ) ^
2 )  =  ( ( normh `  ( F `  A ) )  x.  ( normh `  ( F `  A ) ) ) )
4340, 42eqtr3d 2486 . . . . . 6  |-  ( A  e.  ~H  ->  (
( F `  A
)  .ih  ( F `  A ) )  =  ( ( normh `  ( F `  A )
)  x.  ( normh `  ( F `  A
) ) ) )
4433, 38, 433eqtrd 2488 . . . . 5  |-  ( A  e.  ~H  ->  ( abs `  ( ( T `
 ( F `  A ) )  .ih  A ) )  =  ( ( normh `  ( F `  A ) )  x.  ( normh `  ( F `  A ) ) ) )
4516recnd 9625 . . . . . 6  |-  ( A  e.  ~H  ->  ( normh `  A )  e.  CC )
4618recni 9611 . . . . . . 7  |-  ( normop `  T )  e.  CC
47 mul32 9750 . . . . . . 7  |-  ( ( ( normop `  T )  e.  CC  /\  ( normh `  ( F `  A
) )  e.  CC  /\  ( normh `  A )  e.  CC )  ->  (
( ( normop `  T
)  x.  ( normh `  ( F `  A
) ) )  x.  ( normh `  A )
)  =  ( ( ( normop `  T )  x.  ( normh `  A )
)  x.  ( normh `  ( F `  A
) ) ) )
4846, 47mp3an1 1312 . . . . . 6  |-  ( ( ( normh `  ( F `  A ) )  e.  CC  /\  ( normh `  A )  e.  CC )  ->  ( ( (
normop `  T )  x.  ( normh `  ( F `  A ) ) )  x.  ( normh `  A
) )  =  ( ( ( normop `  T
)  x.  ( normh `  A ) )  x.  ( normh `  ( F `  A ) ) ) )
4941, 45, 48syl2anc 661 . . . . 5  |-  ( A  e.  ~H  ->  (
( ( normop `  T
)  x.  ( normh `  ( F `  A
) ) )  x.  ( normh `  A )
)  =  ( ( ( normop `  T )  x.  ( normh `  A )
)  x.  ( normh `  ( F `  A
) ) ) )
5030, 44, 493brtr3d 4466 . . . 4  |-  ( A  e.  ~H  ->  (
( normh `  ( F `  A ) )  x.  ( normh `  ( F `  A ) ) )  <_  ( ( (
normop `  T )  x.  ( normh `  A )
)  x.  ( normh `  ( F `  A
) ) ) )
5150adantr 465 . . 3  |-  ( ( A  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  (
( normh `  ( F `  A ) )  x.  ( normh `  ( F `  A ) ) )  <_  ( ( (
normop `  T )  x.  ( normh `  A )
)  x.  ( normh `  ( F `  A
) ) ) )
5220adantr 465 . . . 4  |-  ( ( A  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  ( normh `  ( F `  A ) )  e.  RR )
53 remulcl 9580 . . . . . 6  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  A )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  A ) )  e.  RR )
5418, 16, 53sylancr 663 . . . . 5  |-  ( A  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  A )
)  e.  RR )
5554adantr 465 . . . 4  |-  ( ( A  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  (
( normop `  T )  x.  ( normh `  A )
)  e.  RR )
56 normge0 25915 . . . . . . 7  |-  ( ( F `  A )  e.  ~H  ->  0  <_  ( normh `  ( F `  A ) ) )
57 0re 9599 . . . . . . . 8  |-  0  e.  RR
58 leltne 9677 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  ( normh `  ( F `  A ) )  e.  RR  /\  0  <_ 
( normh `  ( F `  A ) ) )  ->  ( 0  < 
( normh `  ( F `  A ) )  <->  ( normh `  ( F `  A
) )  =/=  0
) )
5957, 58mp3an1 1312 . . . . . . 7  |-  ( ( ( normh `  ( F `  A ) )  e.  RR  /\  0  <_ 
( normh `  ( F `  A ) ) )  ->  ( 0  < 
( normh `  ( F `  A ) )  <->  ( normh `  ( F `  A
) )  =/=  0
) )
6019, 56, 59syl2anc 661 . . . . . 6  |-  ( ( F `  A )  e.  ~H  ->  (
0  <  ( normh `  ( F `  A
) )  <->  ( normh `  ( F `  A
) )  =/=  0
) )
6160biimpar 485 . . . . 5  |-  ( ( ( F `  A
)  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  0  <  ( normh `  ( F `  A ) ) )
627, 61sylan 471 . . . 4  |-  ( ( A  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  0  <  ( normh `  ( F `  A ) ) )
63 lemul1 10400 . . . 4  |-  ( ( ( normh `  ( F `  A ) )  e.  RR  /\  ( (
normop `  T )  x.  ( normh `  A )
)  e.  RR  /\  ( ( normh `  ( F `  A )
)  e.  RR  /\  0  <  ( normh `  ( F `  A )
) ) )  -> 
( ( normh `  ( F `  A )
)  <_  ( ( normop `  T )  x.  ( normh `  A ) )  <-> 
( ( normh `  ( F `  A )
)  x.  ( normh `  ( F `  A
) ) )  <_ 
( ( ( normop `  T )  x.  ( normh `  A ) )  x.  ( normh `  ( F `  A )
) ) ) )
6452, 55, 52, 62, 63syl112anc 1233 . . 3  |-  ( ( A  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  (
( normh `  ( F `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) )  <->  ( ( normh `  ( F `  A ) )  x.  ( normh `  ( F `  A ) ) )  <_  ( ( (
normop `  T )  x.  ( normh `  A )
)  x.  ( normh `  ( F `  A
) ) ) ) )
6551, 64mpbird 232 . 2  |-  ( ( A  e.  ~H  /\  ( normh `  ( F `  A ) )  =/=  0 )  ->  ( normh `  ( F `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
66 nmopge0 26702 . . . . 5  |-  ( T : ~H --> ~H  ->  0  <_  ( normop `  T
) )
678, 66ax-mp 5 . . . 4  |-  0  <_  ( normop `  T )
68 mulge0 10076 . . . 4  |-  ( ( ( ( normop `  T
)  e.  RR  /\  0  <_  ( normop `  T
) )  /\  (
( normh `  A )  e.  RR  /\  0  <_ 
( normh `  A )
) )  ->  0  <_  ( ( normop `  T
)  x.  ( normh `  A ) ) )
6918, 67, 68mpanl12 682 . . 3  |-  ( ( ( normh `  A )  e.  RR  /\  0  <_ 
( normh `  A )
)  ->  0  <_  ( ( normop `  T )  x.  ( normh `  A )
) )
7016, 26, 69syl2anc 661 . 2  |-  ( A  e.  ~H  ->  0  <_  ( ( normop `  T
)  x.  ( normh `  A ) ) )
711, 65, 70pm2.61ne 2758 1  |-  ( A  e.  ~H  ->  ( normh `  ( F `  A ) )  <_ 
( ( normop `  T
)  x.  ( normh `  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   class class class wbr 4437    |-> cmpt 4495   -->wf 5574   ` cfv 5578   iota_crio 6241  (class class class)co 6281   CCcc 9493   RRcr 9494   0cc0 9495    x. cmul 9500    < clt 9631    <_ cle 9632   2c2 10591   ^cexp 12145   abscabs 13046   ~Hchil 25708    .ih csp 25711   normhcno 25712   normopcnop 25734   ConOpccop 25735   LinOpclo 25736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cc 8818  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573  ax-addf 9574  ax-mulf 9575  ax-hilex 25788  ax-hfvadd 25789  ax-hvcom 25790  ax-hvass 25791  ax-hv0cl 25792  ax-hvaddid 25793  ax-hfvmul 25794  ax-hvmulid 25795  ax-hvmulass 25796  ax-hvdistr1 25797  ax-hvdistr2 25798  ax-hvmul0 25799  ax-hfi 25868  ax-his1 25871  ax-his2 25872  ax-his3 25873  ax-his4 25874  ax-hcompl 25991
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-om 6686  df-1st 6785  df-2nd 6786  df-supp 6904  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-omul 7137  df-er 7313  df-map 7424  df-pm 7425  df-ixp 7472  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fsupp 7832  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-acn 8326  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-10 10608  df-n0 10802  df-z 10871  df-dec 10985  df-uz 11091  df-q 11192  df-rp 11230  df-xneg 11327  df-xadd 11328  df-xmul 11329  df-ioo 11542  df-ico 11544  df-icc 11545  df-fz 11682  df-fzo 11804  df-fl 11908  df-seq 12087  df-exp 12146  df-hash 12385  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-clim 13290  df-rlim 13291  df-sum 13488  df-struct 14511  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-starv 14589  df-sca 14590  df-vsca 14591  df-ip 14592  df-tset 14593  df-ple 14594  df-ds 14596  df-unif 14597  df-hom 14598  df-cco 14599  df-rest 14697  df-topn 14698  df-0g 14716  df-gsum 14717  df-topgen 14718  df-pt 14719  df-prds 14722  df-xrs 14776  df-qtop 14781  df-imas 14782  df-xps 14784  df-mre 14860  df-mrc 14861  df-acs 14863  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15841  df-mulg 15934  df-cntz 16229  df-cmn 16674  df-psmet 18285  df-xmet 18286  df-met 18287  df-bl 18288  df-mopn 18289  df-fbas 18290  df-fg 18291  df-cnfld 18295  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-ntr 19394  df-cls 19395  df-nei 19472  df-cn 19601  df-cnp 19602  df-lm 19603  df-t1 19688  df-haus 19689  df-tx 19936  df-hmeo 20129  df-fil 20220  df-fm 20312  df-flim 20313  df-flf 20314  df-xms 20696  df-ms 20697  df-tms 20698  df-cfil 21567  df-cau 21568  df-cmet 21569  df-grpo 25065  df-gid 25066  df-ginv 25067  df-gdiv 25068  df-ablo 25156  df-subgo 25176  df-vc 25311  df-nv 25357  df-va 25360  df-ba 25361  df-sm 25362  df-0v 25363  df-vs 25364  df-nmcv 25365  df-ims 25366  df-dip 25483  df-ssp 25507  df-ph 25600  df-cbn 25651  df-hnorm 25757  df-hba 25758  df-hvsub 25760  df-hlim 25761  df-hcau 25762  df-sh 25996  df-ch 26011  df-oc 26042  df-ch0 26043  df-nmop 26630  df-cnop 26631  df-lnop 26632  df-nmfn 26636  df-nlfn 26637  df-cnfn 26638  df-lnfn 26639
This theorem is referenced by:  cnlnadjlem8  26865  nmopadjlei  26879
  Copyright terms: Public domain W3C validator