HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Unicode version

Theorem cnlnadjlem2 27556
Description: Lemma for cnlnadji 27564. 
G is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1  |-  T  e. 
LinOp
cnlnadjlem.2  |-  T  e. 
ConOp
cnlnadjlem.3  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
Assertion
Ref Expression
cnlnadjlem2  |-  ( y  e.  ~H  ->  ( G  e.  LinFn  /\  G  e.  ConFn ) )
Distinct variable group:    y, g, T
Allowed substitution hints:    G( y, g)

Proof of Theorem cnlnadjlem2
Dummy variables  w  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8  |-  T  e. 
LinOp
21lnopfi 27457 . . . . . . 7  |-  T : ~H
--> ~H
32ffvelrni 6036 . . . . . 6  |-  ( g  e.  ~H  ->  ( T `  g )  e.  ~H )
4 hicl 26568 . . . . . 6  |-  ( ( ( T `  g
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  g )  .ih  y
)  e.  CC )
53, 4sylan 473 . . . . 5  |-  ( ( g  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  g )  .ih  y
)  e.  CC )
65ancoms 454 . . . 4  |-  ( ( y  e.  ~H  /\  g  e.  ~H )  ->  ( ( T `  g )  .ih  y
)  e.  CC )
7 cnlnadjlem.3 . . . 4  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
86, 7fmptd 6061 . . 3  |-  ( y  e.  ~H  ->  G : ~H --> CC )
9 hvmulcl 26501 . . . . . . 7  |-  ( ( x  e.  CC  /\  w  e.  ~H )  ->  ( x  .h  w
)  e.  ~H )
101lnopaddi 27459 . . . . . . . . . . . 12  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H )  ->  ( T `  (
( x  .h  w
)  +h  z ) )  =  ( ( T `  ( x  .h  w ) )  +h  ( T `  z ) ) )
11103adant3 1025 . . . . . . . . . . 11  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  ( T `  ( (
x  .h  w )  +h  z ) )  =  ( ( T `
 ( x  .h  w ) )  +h  ( T `  z
) ) )
1211oveq1d 6320 . . . . . . . . . 10  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  (
( x  .h  w
)  +h  z ) )  .ih  y )  =  ( ( ( T `  ( x  .h  w ) )  +h  ( T `  z ) )  .ih  y ) )
132ffvelrni 6036 . . . . . . . . . . 11  |-  ( ( x  .h  w )  e.  ~H  ->  ( T `  ( x  .h  w ) )  e. 
~H )
142ffvelrni 6036 . . . . . . . . . . 11  |-  ( z  e.  ~H  ->  ( T `  z )  e.  ~H )
15 id 23 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  y  e.  ~H )
16 ax-his2 26571 . . . . . . . . . . 11  |-  ( ( ( T `  (
x  .h  w ) )  e.  ~H  /\  ( T `  z )  e.  ~H  /\  y  e.  ~H )  ->  (
( ( T `  ( x  .h  w
) )  +h  ( T `  z )
)  .ih  y )  =  ( ( ( T `  ( x  .h  w ) ) 
.ih  y )  +  ( ( T `  z )  .ih  y
) ) )
1713, 14, 15, 16syl3an 1306 . . . . . . . . . 10  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( ( T `  ( x  .h  w
) )  +h  ( T `  z )
)  .ih  y )  =  ( ( ( T `  ( x  .h  w ) ) 
.ih  y )  +  ( ( T `  z )  .ih  y
) ) )
1812, 17eqtrd 2470 . . . . . . . . 9  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  (
( x  .h  w
)  +h  z ) )  .ih  y )  =  ( ( ( T `  ( x  .h  w ) ) 
.ih  y )  +  ( ( T `  z )  .ih  y
) ) )
19183comr 1213 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  .h  w
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  ( ( x  .h  w )  +h  z
) )  .ih  y
)  =  ( ( ( T `  (
x  .h  w ) )  .ih  y )  +  ( ( T `
 z )  .ih  y ) ) )
20193expa 1205 . . . . . . 7  |-  ( ( ( y  e.  ~H  /\  ( x  .h  w
)  e.  ~H )  /\  z  e.  ~H )  ->  ( ( T `
 ( ( x  .h  w )  +h  z ) )  .ih  y )  =  ( ( ( T `  ( x  .h  w
) )  .ih  y
)  +  ( ( T `  z ) 
.ih  y ) ) )
219, 20sylanl2 655 . . . . . 6  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( T `  ( ( x  .h  w )  +h  z ) ) 
.ih  y )  =  ( ( ( T `
 ( x  .h  w ) )  .ih  y )  +  ( ( T `  z
)  .ih  y )
) )
22 hvaddcl 26500 . . . . . . . . 9  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  w )  +h  z
)  e.  ~H )
239, 22sylan 473 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  w  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  w )  +h  z )  e.  ~H )
24 cnlnadjlem.2 . . . . . . . . 9  |-  T  e. 
ConOp
251, 24, 7cnlnadjlem1 27555 . . . . . . . 8  |-  ( ( ( x  .h  w
)  +h  z )  e.  ~H  ->  ( G `  ( (
x  .h  w )  +h  z ) )  =  ( ( T `
 ( ( x  .h  w )  +h  z ) )  .ih  y ) )
2623, 25syl 17 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  w  e.  ~H )  /\  z  e.  ~H )  ->  ( G `  ( ( x  .h  w )  +h  z
) )  =  ( ( T `  (
( x  .h  w
)  +h  z ) )  .ih  y ) )
2726adantll 718 . . . . . 6  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( G `
 ( ( x  .h  w )  +h  z ) )  =  ( ( T `  ( ( x  .h  w )  +h  z
) )  .ih  y
) )
282ffvelrni 6036 . . . . . . . . . . 11  |-  ( w  e.  ~H  ->  ( T `  w )  e.  ~H )
29 ax-his3 26572 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( T `  w )  e.  ~H  /\  y  e.  ~H )  ->  (
( x  .h  ( T `  w )
)  .ih  y )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
3028, 29syl3an2 1298 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  w  e.  ~H  /\  y  e.  ~H )  ->  (
( x  .h  ( T `  w )
)  .ih  y )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
31303comr 1213 . . . . . . . . 9  |-  ( ( y  e.  ~H  /\  x  e.  CC  /\  w  e.  ~H )  ->  (
( x  .h  ( T `  w )
)  .ih  y )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
32313expb 1206 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( (
x  .h  ( T `
 w ) ) 
.ih  y )  =  ( x  x.  (
( T `  w
)  .ih  y )
) )
331lnopmuli 27460 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  w  e.  ~H )  ->  ( T `  (
x  .h  w ) )  =  ( x  .h  ( T `  w ) ) )
3433oveq1d 6320 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  w  e.  ~H )  ->  ( ( T `  ( x  .h  w
) )  .ih  y
)  =  ( ( x  .h  ( T `
 w ) ) 
.ih  y ) )
3534adantl 467 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( ( T `  ( x  .h  w ) )  .ih  y )  =  ( ( x  .h  ( T `  w )
)  .ih  y )
)
361, 24, 7cnlnadjlem1 27555 . . . . . . . . . 10  |-  ( w  e.  ~H  ->  ( G `  w )  =  ( ( T `
 w )  .ih  y ) )
3736oveq2d 6321 . . . . . . . . 9  |-  ( w  e.  ~H  ->  (
x  x.  ( G `
 w ) )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
3837ad2antll 733 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( x  x.  ( G `  w
) )  =  ( x  x.  ( ( T `  w ) 
.ih  y ) ) )
3932, 35, 383eqtr4rd 2481 . . . . . . 7  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( x  x.  ( G `  w
) )  =  ( ( T `  (
x  .h  w ) )  .ih  y ) )
401, 24, 7cnlnadjlem1 27555 . . . . . . 7  |-  ( z  e.  ~H  ->  ( G `  z )  =  ( ( T `
 z )  .ih  y ) )
4139, 40oveqan12d 6324 . . . . . 6  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( x  x.  ( G `
 w ) )  +  ( G `  z ) )  =  ( ( ( T `
 ( x  .h  w ) )  .ih  y )  +  ( ( T `  z
)  .ih  y )
) )
4221, 27, 413eqtr4d 2480 . . . . 5  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( G `
 ( ( x  .h  w )  +h  z ) )  =  ( ( x  x.  ( G `  w
) )  +  ( G `  z ) ) )
4342ralrimiva 2846 . . . 4  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  A. z  e.  ~H  ( G `  ( ( x  .h  w )  +h  z
) )  =  ( ( x  x.  ( G `  w )
)  +  ( G `
 z ) ) )
4443ralrimivva 2853 . . 3  |-  ( y  e.  ~H  ->  A. x  e.  CC  A. w  e. 
~H  A. z  e.  ~H  ( G `  ( ( x  .h  w )  +h  z ) )  =  ( ( x  x.  ( G `  w ) )  +  ( G `  z
) ) )
45 ellnfn 27371 . . 3  |-  ( G  e.  LinFn 
<->  ( G : ~H --> CC  /\  A. x  e.  CC  A. w  e. 
~H  A. z  e.  ~H  ( G `  ( ( x  .h  w )  +h  z ) )  =  ( ( x  x.  ( G `  w ) )  +  ( G `  z
) ) ) )
468, 44, 45sylanbrc 668 . 2  |-  ( y  e.  ~H  ->  G  e.  LinFn )
471, 24nmcopexi 27515 . . . . 5  |-  ( normop `  T )  e.  RR
48 normcl 26613 . . . . 5  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
49 remulcl 9623 . . . . 5  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  y )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  y ) )  e.  RR )
5047, 48, 49sylancr 667 . . . 4  |-  ( y  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  y )
)  e.  RR )
5140adantr 466 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( G `  z
)  =  ( ( T `  z ) 
.ih  y ) )
52 hicl 26568 . . . . . . . . . . 11  |-  ( ( ( T `  z
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  z )  .ih  y
)  e.  CC )
5314, 52sylan 473 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  z )  .ih  y
)  e.  CC )
5451, 53eqeltrd 2517 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( G `  z
)  e.  CC )
5554abscld 13476 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  e.  RR )
56 normcl 26613 . . . . . . . . . 10  |-  ( ( T `  z )  e.  ~H  ->  ( normh `  ( T `  z ) )  e.  RR )
5714, 56syl 17 . . . . . . . . 9  |-  ( z  e.  ~H  ->  ( normh `  ( T `  z ) )  e.  RR )
58 remulcl 9623 . . . . . . . . 9  |-  ( ( ( normh `  ( T `  z ) )  e.  RR  /\  ( normh `  y )  e.  RR )  ->  ( ( normh `  ( T `  z
) )  x.  ( normh `  y ) )  e.  RR )
5957, 48, 58syl2an 479 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  ( T `  z )
)  x.  ( normh `  y ) )  e.  RR )
60 normcl 26613 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( normh `  z )  e.  RR )
61 remulcl 9623 . . . . . . . . . 10  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  z )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  z ) )  e.  RR )
6247, 60, 61sylancr 667 . . . . . . . . 9  |-  ( z  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  z )
)  e.  RR )
63 remulcl 9623 . . . . . . . . 9  |-  ( ( ( ( normop `  T
)  x.  ( normh `  z ) )  e.  RR  /\  ( normh `  y )  e.  RR )  ->  ( ( (
normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) )  e.  RR )
6462, 48, 63syl2an 479 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normop `  T )  x.  ( normh `  z ) )  x.  ( normh `  y
) )  e.  RR )
6551fveq2d 5885 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  =  ( abs `  ( ( T `  z )  .ih  y
) ) )
66 bcs 26669 . . . . . . . . . 10  |-  ( ( ( T `  z
)  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( T `  z
)  .ih  y )
)  <_  ( ( normh `  ( T `  z ) )  x.  ( normh `  y )
) )
6714, 66sylan 473 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( T `  z
)  .ih  y )
)  <_  ( ( normh `  ( T `  z ) )  x.  ( normh `  y )
) )
6865, 67eqbrtrd 4446 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( ( normh `  ( T `  z ) )  x.  ( normh `  y )
) )
6957adantr 466 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( T `  z ) )  e.  RR )
7062adantr 466 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normop `  T
)  x.  ( normh `  z ) )  e.  RR )
71 normge0 26614 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  0  <_  ( normh `  y )
)
7248, 71jca 534 . . . . . . . . . 10  |-  ( y  e.  ~H  ->  (
( normh `  y )  e.  RR  /\  0  <_ 
( normh `  y )
) )
7372adantl 467 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  y
)  e.  RR  /\  0  <_  ( normh `  y
) ) )
741, 24nmcoplbi 27516 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( normh `  ( T `  z ) )  <_ 
( ( normop `  T
)  x.  ( normh `  z ) ) )
7574adantr 466 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( T `  z ) )  <_ 
( ( normop `  T
)  x.  ( normh `  z ) ) )
76 lemul1a 10458 . . . . . . . . 9  |-  ( ( ( ( normh `  ( T `  z )
)  e.  RR  /\  ( ( normop `  T
)  x.  ( normh `  z ) )  e.  RR  /\  ( (
normh `  y )  e.  RR  /\  0  <_ 
( normh `  y )
) )  /\  ( normh `  ( T `  z ) )  <_ 
( ( normop `  T
)  x.  ( normh `  z ) ) )  ->  ( ( normh `  ( T `  z
) )  x.  ( normh `  y ) )  <_  ( ( (
normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) ) )
7769, 70, 73, 75, 76syl31anc 1267 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  ( T `  z )
)  x.  ( normh `  y ) )  <_ 
( ( ( normop `  T )  x.  ( normh `  z ) )  x.  ( normh `  y
) ) )
7855, 59, 64, 68, 77letrd 9791 . . . . . . 7  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) ) )
7960recnd 9668 . . . . . . . 8  |-  ( z  e.  ~H  ->  ( normh `  z )  e.  CC )
8048recnd 9668 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  CC )
8147recni 9654 . . . . . . . . 9  |-  ( normop `  T )  e.  CC
82 mul32 9799 . . . . . . . . 9  |-  ( ( ( normop `  T )  e.  CC  /\  ( normh `  z )  e.  CC  /\  ( normh `  y )  e.  CC )  ->  (
( ( normop `  T
)  x.  ( normh `  z ) )  x.  ( normh `  y )
)  =  ( ( ( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8381, 82mp3an1 1347 . . . . . . . 8  |-  ( ( ( normh `  z )  e.  CC  /\  ( normh `  y )  e.  CC )  ->  ( ( (
normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) )  =  ( ( ( normop `  T )  x.  ( normh `  y ) )  x.  ( normh `  z
) ) )
8479, 80, 83syl2an 479 . . . . . . 7  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normop `  T )  x.  ( normh `  z ) )  x.  ( normh `  y
) )  =  ( ( ( normop `  T
)  x.  ( normh `  y ) )  x.  ( normh `  z )
) )
8578, 84breqtrd 4450 . . . . . 6  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8685ancoms 454 . . . . 5  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8786ralrimiva 2846 . . . 4  |-  ( y  e.  ~H  ->  A. z  e.  ~H  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
88 oveq1 6312 . . . . . . 7  |-  ( x  =  ( ( normop `  T )  x.  ( normh `  y ) )  ->  ( x  x.  ( normh `  z )
)  =  ( ( ( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8988breq2d 4438 . . . . . 6  |-  ( x  =  ( ( normop `  T )  x.  ( normh `  y ) )  ->  ( ( abs `  ( G `  z
) )  <_  (
x  x.  ( normh `  z ) )  <->  ( abs `  ( G `  z
) )  <_  (
( ( normop `  T
)  x.  ( normh `  y ) )  x.  ( normh `  z )
) ) )
9089ralbidv 2871 . . . . 5  |-  ( x  =  ( ( normop `  T )  x.  ( normh `  y ) )  ->  ( A. z  e.  ~H  ( abs `  ( G `  z )
)  <_  ( x  x.  ( normh `  z )
)  <->  A. z  e.  ~H  ( abs `  ( G `
 z ) )  <_  ( ( (
normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) ) )
9190rspcev 3188 . . . 4  |-  ( ( ( ( normop `  T
)  x.  ( normh `  y ) )  e.  RR  /\  A. z  e.  ~H  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )  ->  E. x  e.  RR  A. z  e.  ~H  ( abs `  ( G `  z ) )  <_ 
( x  x.  ( normh `  z ) ) )
9250, 87, 91syl2anc 665 . . 3  |-  ( y  e.  ~H  ->  E. x  e.  RR  A. z  e. 
~H  ( abs `  ( G `  z )
)  <_  ( x  x.  ( normh `  z )
) )
93 lnfncon 27544 . . . 4  |-  ( G  e.  LinFn  ->  ( G  e.  ConFn 
<->  E. x  e.  RR  A. z  e.  ~H  ( abs `  ( G `  z ) )  <_ 
( x  x.  ( normh `  z ) ) ) )
9446, 93syl 17 . . 3  |-  ( y  e.  ~H  ->  ( G  e.  ConFn  <->  E. x  e.  RR  A. z  e. 
~H  ( abs `  ( G `  z )
)  <_  ( x  x.  ( normh `  z )
) ) )
9592, 94mpbird 235 . 2  |-  ( y  e.  ~H  ->  G  e.  ConFn )
9646, 95jca 534 1  |-  ( y  e.  ~H  ->  ( G  e.  LinFn  /\  G  e.  ConFn ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782   E.wrex 2783   class class class wbr 4426    |-> cmpt 4484   -->wf 5597   ` cfv 5601  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538    + caddc 9541    x. cmul 9543    <_ cle 9675   abscabs 13276   ~Hchil 26407    +h cva 26408    .h csm 26409    .ih csp 26410   normhcno 26411   normopcnop 26433   ConOpccop 26434   LinOpclo 26435   ConFnccnfn 26441   LinFnclf 26442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-pre-sup 9616  ax-addf 9617  ax-mulf 9618  ax-hilex 26487  ax-hfvadd 26488  ax-hvcom 26489  ax-hvass 26490  ax-hv0cl 26491  ax-hvaddid 26492  ax-hfvmul 26493  ax-hvmulid 26494  ax-hvmulass 26495  ax-hvdistr1 26496  ax-hvdistr2 26497  ax-hvmul0 26498  ax-hfi 26567  ax-his1 26570  ax-his2 26571  ax-his3 26572  ax-his4 26573
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-se 4814  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-isom 5610  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-supp 6926  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-2o 7191  df-oadd 7194  df-er 7371  df-map 7482  df-ixp 7531  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fsupp 7890  df-fi 7931  df-sup 7962  df-oi 8025  df-card 8372  df-cda 8596  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-icc 11642  df-fz 11783  df-fzo 11914  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13141  df-re 13142  df-im 13143  df-sqrt 13277  df-abs 13278  df-clim 13530  df-sum 13731  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-starv 15167  df-sca 15168  df-vsca 15169  df-ip 15170  df-tset 15171  df-ple 15172  df-ds 15174  df-unif 15175  df-hom 15176  df-cco 15177  df-rest 15280  df-topn 15281  df-0g 15299  df-gsum 15300  df-topgen 15301  df-pt 15302  df-prds 15305  df-xrs 15359  df-qtop 15364  df-imas 15365  df-xps 15367  df-mre 15443  df-mrc 15444  df-acs 15446  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-mulg 16627  df-cntz 16922  df-cmn 17367  df-psmet 18897  df-xmet 18898  df-met 18899  df-bl 18900  df-mopn 18901  df-cnfld 18906  df-top 19852  df-bases 19853  df-topon 19854  df-topsp 19855  df-cld 19965  df-ntr 19966  df-cls 19967  df-cn 20174  df-cnp 20175  df-t1 20261  df-haus 20262  df-tx 20508  df-hmeo 20701  df-xms 21266  df-ms 21267  df-tms 21268  df-grpo 25764  df-gid 25765  df-ginv 25766  df-gdiv 25767  df-ablo 25855  df-vc 26010  df-nv 26056  df-va 26059  df-ba 26060  df-sm 26061  df-0v 26062  df-vs 26063  df-nmcv 26064  df-ims 26065  df-dip 26182  df-ph 26299  df-hnorm 26456  df-hba 26457  df-hvsub 26459  df-nmop 27327  df-cnop 27328  df-lnop 27329  df-nmfn 27333  df-cnfn 27335  df-lnfn 27336
This theorem is referenced by:  cnlnadjlem3  27557  cnlnadjlem5  27559
  Copyright terms: Public domain W3C validator