HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cnlnadjlem2 Structured version   Unicode version

Theorem cnlnadjlem2 25295
Description: Lemma for cnlnadji 25303. 
G is a continuous linear functional. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
cnlnadjlem.1  |-  T  e. 
LinOp
cnlnadjlem.2  |-  T  e. 
ConOp
cnlnadjlem.3  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
Assertion
Ref Expression
cnlnadjlem2  |-  ( y  e.  ~H  ->  ( G  e.  LinFn  /\  G  e.  ConFn ) )
Distinct variable group:    y, g, T
Allowed substitution hints:    G( y, g)

Proof of Theorem cnlnadjlem2
Dummy variables  w  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnlnadjlem.1 . . . . . . . 8  |-  T  e. 
LinOp
21lnopfi 25196 . . . . . . 7  |-  T : ~H
--> ~H
32ffvelrni 5830 . . . . . 6  |-  ( g  e.  ~H  ->  ( T `  g )  e.  ~H )
4 hicl 24305 . . . . . 6  |-  ( ( ( T `  g
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  g )  .ih  y
)  e.  CC )
53, 4sylan 468 . . . . 5  |-  ( ( g  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  g )  .ih  y
)  e.  CC )
65ancoms 450 . . . 4  |-  ( ( y  e.  ~H  /\  g  e.  ~H )  ->  ( ( T `  g )  .ih  y
)  e.  CC )
7 cnlnadjlem.3 . . . 4  |-  G  =  ( g  e.  ~H  |->  ( ( T `  g )  .ih  y
) )
86, 7fmptd 5855 . . 3  |-  ( y  e.  ~H  ->  G : ~H --> CC )
9 hvmulcl 24238 . . . . . . 7  |-  ( ( x  e.  CC  /\  w  e.  ~H )  ->  ( x  .h  w
)  e.  ~H )
101lnopaddi 25198 . . . . . . . . . . . 12  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H )  ->  ( T `  (
( x  .h  w
)  +h  z ) )  =  ( ( T `  ( x  .h  w ) )  +h  ( T `  z ) ) )
11103adant3 1001 . . . . . . . . . . 11  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  ( T `  ( (
x  .h  w )  +h  z ) )  =  ( ( T `
 ( x  .h  w ) )  +h  ( T `  z
) ) )
1211oveq1d 6095 . . . . . . . . . 10  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  (
( x  .h  w
)  +h  z ) )  .ih  y )  =  ( ( ( T `  ( x  .h  w ) )  +h  ( T `  z ) )  .ih  y ) )
132ffvelrni 5830 . . . . . . . . . . 11  |-  ( ( x  .h  w )  e.  ~H  ->  ( T `  ( x  .h  w ) )  e. 
~H )
142ffvelrni 5830 . . . . . . . . . . 11  |-  ( z  e.  ~H  ->  ( T `  z )  e.  ~H )
15 id 22 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  y  e.  ~H )
16 ax-his2 24308 . . . . . . . . . . 11  |-  ( ( ( T `  (
x  .h  w ) )  e.  ~H  /\  ( T `  z )  e.  ~H  /\  y  e.  ~H )  ->  (
( ( T `  ( x  .h  w
) )  +h  ( T `  z )
)  .ih  y )  =  ( ( ( T `  ( x  .h  w ) ) 
.ih  y )  +  ( ( T `  z )  .ih  y
) ) )
1713, 14, 15, 16syl3an 1253 . . . . . . . . . 10  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( ( T `  ( x  .h  w
) )  +h  ( T `  z )
)  .ih  y )  =  ( ( ( T `  ( x  .h  w ) ) 
.ih  y )  +  ( ( T `  z )  .ih  y
) ) )
1812, 17eqtrd 2465 . . . . . . . . 9  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( T `  (
( x  .h  w
)  +h  z ) )  .ih  y )  =  ( ( ( T `  ( x  .h  w ) ) 
.ih  y )  +  ( ( T `  z )  .ih  y
) ) )
19183comr 1188 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  .h  w
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( T `  ( ( x  .h  w )  +h  z
) )  .ih  y
)  =  ( ( ( T `  (
x  .h  w ) )  .ih  y )  +  ( ( T `
 z )  .ih  y ) ) )
20193expa 1180 . . . . . . 7  |-  ( ( ( y  e.  ~H  /\  ( x  .h  w
)  e.  ~H )  /\  z  e.  ~H )  ->  ( ( T `
 ( ( x  .h  w )  +h  z ) )  .ih  y )  =  ( ( ( T `  ( x  .h  w
) )  .ih  y
)  +  ( ( T `  z ) 
.ih  y ) ) )
219, 20sylanl2 644 . . . . . 6  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( T `  ( ( x  .h  w )  +h  z ) ) 
.ih  y )  =  ( ( ( T `
 ( x  .h  w ) )  .ih  y )  +  ( ( T `  z
)  .ih  y )
) )
22 hvaddcl 24237 . . . . . . . . 9  |-  ( ( ( x  .h  w
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  w )  +h  z
)  e.  ~H )
239, 22sylan 468 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  w  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  w )  +h  z )  e.  ~H )
24 cnlnadjlem.2 . . . . . . . . 9  |-  T  e. 
ConOp
251, 24, 7cnlnadjlem1 25294 . . . . . . . 8  |-  ( ( ( x  .h  w
)  +h  z )  e.  ~H  ->  ( G `  ( (
x  .h  w )  +h  z ) )  =  ( ( T `
 ( ( x  .h  w )  +h  z ) )  .ih  y ) )
2623, 25syl 16 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  w  e.  ~H )  /\  z  e.  ~H )  ->  ( G `  ( ( x  .h  w )  +h  z
) )  =  ( ( T `  (
( x  .h  w
)  +h  z ) )  .ih  y ) )
2726adantll 706 . . . . . 6  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( G `
 ( ( x  .h  w )  +h  z ) )  =  ( ( T `  ( ( x  .h  w )  +h  z
) )  .ih  y
) )
282ffvelrni 5830 . . . . . . . . . . 11  |-  ( w  e.  ~H  ->  ( T `  w )  e.  ~H )
29 ax-his3 24309 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( T `  w )  e.  ~H  /\  y  e.  ~H )  ->  (
( x  .h  ( T `  w )
)  .ih  y )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
3028, 29syl3an2 1245 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  w  e.  ~H  /\  y  e.  ~H )  ->  (
( x  .h  ( T `  w )
)  .ih  y )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
31303comr 1188 . . . . . . . . 9  |-  ( ( y  e.  ~H  /\  x  e.  CC  /\  w  e.  ~H )  ->  (
( x  .h  ( T `  w )
)  .ih  y )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
32313expb 1181 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( (
x  .h  ( T `
 w ) ) 
.ih  y )  =  ( x  x.  (
( T `  w
)  .ih  y )
) )
331lnopmuli 25199 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  w  e.  ~H )  ->  ( T `  (
x  .h  w ) )  =  ( x  .h  ( T `  w ) ) )
3433oveq1d 6095 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  w  e.  ~H )  ->  ( ( T `  ( x  .h  w
) )  .ih  y
)  =  ( ( x  .h  ( T `
 w ) ) 
.ih  y ) )
3534adantl 463 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( ( T `  ( x  .h  w ) )  .ih  y )  =  ( ( x  .h  ( T `  w )
)  .ih  y )
)
361, 24, 7cnlnadjlem1 25294 . . . . . . . . . 10  |-  ( w  e.  ~H  ->  ( G `  w )  =  ( ( T `
 w )  .ih  y ) )
3736oveq2d 6096 . . . . . . . . 9  |-  ( w  e.  ~H  ->  (
x  x.  ( G `
 w ) )  =  ( x  x.  ( ( T `  w )  .ih  y
) ) )
3837ad2antll 721 . . . . . . . 8  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( x  x.  ( G `  w
) )  =  ( x  x.  ( ( T `  w ) 
.ih  y ) ) )
3932, 35, 383eqtr4rd 2476 . . . . . . 7  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  ( x  x.  ( G `  w
) )  =  ( ( T `  (
x  .h  w ) )  .ih  y ) )
401, 24, 7cnlnadjlem1 25294 . . . . . . 7  |-  ( z  e.  ~H  ->  ( G `  z )  =  ( ( T `
 z )  .ih  y ) )
4139, 40oveqan12d 6099 . . . . . 6  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( x  x.  ( G `
 w ) )  +  ( G `  z ) )  =  ( ( ( T `
 ( x  .h  w ) )  .ih  y )  +  ( ( T `  z
)  .ih  y )
) )
4221, 27, 413eqtr4d 2475 . . . . 5  |-  ( ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  /\  z  e.  ~H )  ->  ( G `
 ( ( x  .h  w )  +h  z ) )  =  ( ( x  x.  ( G `  w
) )  +  ( G `  z ) ) )
4342ralrimiva 2789 . . . 4  |-  ( ( y  e.  ~H  /\  ( x  e.  CC  /\  w  e.  ~H )
)  ->  A. z  e.  ~H  ( G `  ( ( x  .h  w )  +h  z
) )  =  ( ( x  x.  ( G `  w )
)  +  ( G `
 z ) ) )
4443ralrimivva 2798 . . 3  |-  ( y  e.  ~H  ->  A. x  e.  CC  A. w  e. 
~H  A. z  e.  ~H  ( G `  ( ( x  .h  w )  +h  z ) )  =  ( ( x  x.  ( G `  w ) )  +  ( G `  z
) ) )
45 ellnfn 25110 . . 3  |-  ( G  e.  LinFn 
<->  ( G : ~H --> CC  /\  A. x  e.  CC  A. w  e. 
~H  A. z  e.  ~H  ( G `  ( ( x  .h  w )  +h  z ) )  =  ( ( x  x.  ( G `  w ) )  +  ( G `  z
) ) ) )
468, 44, 45sylanbrc 657 . 2  |-  ( y  e.  ~H  ->  G  e.  LinFn )
471, 24nmcopexi 25254 . . . . 5  |-  ( normop `  T )  e.  RR
48 normcl 24350 . . . . 5  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  RR )
49 remulcl 9355 . . . . 5  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  y )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  y ) )  e.  RR )
5047, 48, 49sylancr 656 . . . 4  |-  ( y  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  y )
)  e.  RR )
5140adantr 462 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( G `  z
)  =  ( ( T `  z ) 
.ih  y ) )
52 hicl 24305 . . . . . . . . . . 11  |-  ( ( ( T `  z
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  z )  .ih  y
)  e.  CC )
5314, 52sylan 468 . . . . . . . . . 10  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( T `  z )  .ih  y
)  e.  CC )
5451, 53eqeltrd 2507 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( G `  z
)  e.  CC )
5554abscld 12906 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  e.  RR )
56 normcl 24350 . . . . . . . . . 10  |-  ( ( T `  z )  e.  ~H  ->  ( normh `  ( T `  z ) )  e.  RR )
5714, 56syl 16 . . . . . . . . 9  |-  ( z  e.  ~H  ->  ( normh `  ( T `  z ) )  e.  RR )
58 remulcl 9355 . . . . . . . . 9  |-  ( ( ( normh `  ( T `  z ) )  e.  RR  /\  ( normh `  y )  e.  RR )  ->  ( ( normh `  ( T `  z
) )  x.  ( normh `  y ) )  e.  RR )
5957, 48, 58syl2an 474 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  ( T `  z )
)  x.  ( normh `  y ) )  e.  RR )
60 normcl 24350 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( normh `  z )  e.  RR )
61 remulcl 9355 . . . . . . . . . 10  |-  ( ( ( normop `  T )  e.  RR  /\  ( normh `  z )  e.  RR )  ->  ( ( normop `  T )  x.  ( normh `  z ) )  e.  RR )
6247, 60, 61sylancr 656 . . . . . . . . 9  |-  ( z  e.  ~H  ->  (
( normop `  T )  x.  ( normh `  z )
)  e.  RR )
63 remulcl 9355 . . . . . . . . 9  |-  ( ( ( ( normop `  T
)  x.  ( normh `  z ) )  e.  RR  /\  ( normh `  y )  e.  RR )  ->  ( ( (
normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) )  e.  RR )
6462, 48, 63syl2an 474 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normop `  T )  x.  ( normh `  z ) )  x.  ( normh `  y
) )  e.  RR )
6551fveq2d 5683 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  =  ( abs `  ( ( T `  z )  .ih  y
) ) )
66 bcs 24406 . . . . . . . . . 10  |-  ( ( ( T `  z
)  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( T `  z
)  .ih  y )
)  <_  ( ( normh `  ( T `  z ) )  x.  ( normh `  y )
) )
6714, 66sylan 468 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  (
( T `  z
)  .ih  y )
)  <_  ( ( normh `  ( T `  z ) )  x.  ( normh `  y )
) )
6865, 67eqbrtrd 4300 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( ( normh `  ( T `  z ) )  x.  ( normh `  y )
) )
6957adantr 462 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( T `  z ) )  e.  RR )
7062adantr 462 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normop `  T
)  x.  ( normh `  z ) )  e.  RR )
71 normge0 24351 . . . . . . . . . . 11  |-  ( y  e.  ~H  ->  0  <_  ( normh `  y )
)
7248, 71jca 529 . . . . . . . . . 10  |-  ( y  e.  ~H  ->  (
( normh `  y )  e.  RR  /\  0  <_ 
( normh `  y )
) )
7372adantl 463 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  y
)  e.  RR  /\  0  <_  ( normh `  y
) ) )
741, 24nmcoplbi 25255 . . . . . . . . . 10  |-  ( z  e.  ~H  ->  ( normh `  ( T `  z ) )  <_ 
( ( normop `  T
)  x.  ( normh `  z ) ) )
7574adantr 462 . . . . . . . . 9  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( normh `  ( T `  z ) )  <_ 
( ( normop `  T
)  x.  ( normh `  z ) ) )
76 lemul1a 10171 . . . . . . . . 9  |-  ( ( ( ( normh `  ( T `  z )
)  e.  RR  /\  ( ( normop `  T
)  x.  ( normh `  z ) )  e.  RR  /\  ( (
normh `  y )  e.  RR  /\  0  <_ 
( normh `  y )
) )  /\  ( normh `  ( T `  z ) )  <_ 
( ( normop `  T
)  x.  ( normh `  z ) ) )  ->  ( ( normh `  ( T `  z
) )  x.  ( normh `  y ) )  <_  ( ( (
normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) ) )
7769, 70, 73, 75, 76syl31anc 1214 . . . . . . . 8  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( normh `  ( T `  z )
)  x.  ( normh `  y ) )  <_ 
( ( ( normop `  T )  x.  ( normh `  z ) )  x.  ( normh `  y
) ) )
7855, 59, 64, 68, 77letrd 9516 . . . . . . 7  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) ) )
7960recnd 9400 . . . . . . . 8  |-  ( z  e.  ~H  ->  ( normh `  z )  e.  CC )
8048recnd 9400 . . . . . . . 8  |-  ( y  e.  ~H  ->  ( normh `  y )  e.  CC )
8147recni 9386 . . . . . . . . 9  |-  ( normop `  T )  e.  CC
82 mul32 9524 . . . . . . . . 9  |-  ( ( ( normop `  T )  e.  CC  /\  ( normh `  z )  e.  CC  /\  ( normh `  y )  e.  CC )  ->  (
( ( normop `  T
)  x.  ( normh `  z ) )  x.  ( normh `  y )
)  =  ( ( ( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8381, 82mp3an1 1294 . . . . . . . 8  |-  ( ( ( normh `  z )  e.  CC  /\  ( normh `  y )  e.  CC )  ->  ( ( (
normop `  T )  x.  ( normh `  z )
)  x.  ( normh `  y ) )  =  ( ( ( normop `  T )  x.  ( normh `  y ) )  x.  ( normh `  z
) ) )
8479, 80, 83syl2an 474 . . . . . . 7  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( ( ( normop `  T )  x.  ( normh `  z ) )  x.  ( normh `  y
) )  =  ( ( ( normop `  T
)  x.  ( normh `  y ) )  x.  ( normh `  z )
) )
8578, 84breqtrd 4304 . . . . . 6  |-  ( ( z  e.  ~H  /\  y  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8685ancoms 450 . . . . 5  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8786ralrimiva 2789 . . . 4  |-  ( y  e.  ~H  ->  A. z  e.  ~H  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
88 oveq1 6087 . . . . . . 7  |-  ( x  =  ( ( normop `  T )  x.  ( normh `  y ) )  ->  ( x  x.  ( normh `  z )
)  =  ( ( ( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )
8988breq2d 4292 . . . . . 6  |-  ( x  =  ( ( normop `  T )  x.  ( normh `  y ) )  ->  ( ( abs `  ( G `  z
) )  <_  (
x  x.  ( normh `  z ) )  <->  ( abs `  ( G `  z
) )  <_  (
( ( normop `  T
)  x.  ( normh `  y ) )  x.  ( normh `  z )
) ) )
9089ralbidv 2725 . . . . 5  |-  ( x  =  ( ( normop `  T )  x.  ( normh `  y ) )  ->  ( A. z  e.  ~H  ( abs `  ( G `  z )
)  <_  ( x  x.  ( normh `  z )
)  <->  A. z  e.  ~H  ( abs `  ( G `
 z ) )  <_  ( ( (
normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) ) )
9190rspcev 3062 . . . 4  |-  ( ( ( ( normop `  T
)  x.  ( normh `  y ) )  e.  RR  /\  A. z  e.  ~H  ( abs `  ( G `  z )
)  <_  ( (
( normop `  T )  x.  ( normh `  y )
)  x.  ( normh `  z ) ) )  ->  E. x  e.  RR  A. z  e.  ~H  ( abs `  ( G `  z ) )  <_ 
( x  x.  ( normh `  z ) ) )
9250, 87, 91syl2anc 654 . . 3  |-  ( y  e.  ~H  ->  E. x  e.  RR  A. z  e. 
~H  ( abs `  ( G `  z )
)  <_  ( x  x.  ( normh `  z )
) )
93 lnfncon 25283 . . . 4  |-  ( G  e.  LinFn  ->  ( G  e.  ConFn 
<->  E. x  e.  RR  A. z  e.  ~H  ( abs `  ( G `  z ) )  <_ 
( x  x.  ( normh `  z ) ) ) )
9446, 93syl 16 . . 3  |-  ( y  e.  ~H  ->  ( G  e.  ConFn  <->  E. x  e.  RR  A. z  e. 
~H  ( abs `  ( G `  z )
)  <_  ( x  x.  ( normh `  z )
) ) )
9592, 94mpbird 232 . 2  |-  ( y  e.  ~H  ->  G  e.  ConFn )
9646, 95jca 529 1  |-  ( y  e.  ~H  ->  ( G  e.  LinFn  /\  G  e.  ConFn ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706   class class class wbr 4280    e. cmpt 4338   -->wf 5402   ` cfv 5406  (class class class)co 6080   CCcc 9268   RRcr 9269   0cc0 9270    + caddc 9273    x. cmul 9275    <_ cle 9407   abscabs 12707   ~Hchil 24144    +h cva 24145    .h csm 24146    .ih csp 24147   normhcno 24148   normopcnop 24170   ConOpccop 24171   LinOpclo 24172   ConFnccnfn 24178   LinFnclf 24179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350  ax-hilex 24224  ax-hfvadd 24225  ax-hvcom 24226  ax-hvass 24227  ax-hv0cl 24228  ax-hvaddid 24229  ax-hfvmul 24230  ax-hvmulid 24231  ax-hvmulass 24232  ax-hvdistr1 24233  ax-hvdistr2 24234  ax-hvmul0 24235  ax-hfi 24304  ax-his1 24307  ax-his2 24308  ax-his3 24309  ax-his4 24310
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-icc 11295  df-fz 11425  df-fzo 11533  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-clim 12950  df-sum 13148  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-cn 18673  df-cnp 18674  df-t1 18760  df-haus 18761  df-tx 18977  df-hmeo 19170  df-xms 19737  df-ms 19738  df-tms 19739  df-grpo 23501  df-gid 23502  df-ginv 23503  df-gdiv 23504  df-ablo 23592  df-vc 23747  df-nv 23793  df-va 23796  df-ba 23797  df-sm 23798  df-0v 23799  df-vs 23800  df-nmcv 23801  df-ims 23802  df-dip 23919  df-ph 24036  df-hnorm 24193  df-hba 24194  df-hvsub 24196  df-nmop 25066  df-cnop 25067  df-lnop 25068  df-nmfn 25072  df-cnfn 25074  df-lnfn 25075
This theorem is referenced by:  cnlnadjlem3  25296  cnlnadjlem5  25298
  Copyright terms: Public domain W3C validator