MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnllycmp Structured version   Unicode version

Theorem cnllycmp 21581
Description: The topology on the complex numbers is locally compact. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
cnllycmp.1  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
cnllycmp  |-  J  e. 𝑛Locally  Comp

Proof of Theorem cnllycmp
Dummy variables  s 
r  u  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnllycmp.1 . . 3  |-  J  =  ( TopOpen ` fld )
21cnfldtop 21416 . 2  |-  J  e. 
Top
3 cnxmet 21405 . . . . 5  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
41cnfldtopn 21414 . . . . . 6  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
54mopni2 21121 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  J  /\  y  e.  x )  ->  E. r  e.  RR+  ( y ( ball `  ( abs  o.  -  ) ) r ) 
C_  x )
63, 5mp3an1 1311 . . . 4  |-  ( ( x  e.  J  /\  y  e.  x )  ->  E. r  e.  RR+  ( y ( ball `  ( abs  o.  -  ) ) r ) 
C_  x )
72a1i 11 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  J  e.  Top )
83a1i 11 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
9 elssuni 4281 . . . . . . . . . . . 12  |-  ( x  e.  J  ->  x  C_ 
U. J )
109ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  x  C_ 
U. J )
111cnfldtopon 21415 . . . . . . . . . . . 12  |-  J  e.  (TopOn `  CC )
1211toponunii 19559 . . . . . . . . . . 11  |-  CC  =  U. J
1310, 12syl6sseqr 3546 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  x  C_  CC )
14 simplr 755 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  y  e.  x )
1513, 14sseldd 3500 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  y  e.  CC )
16 rphalfcl 11269 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  e.  RR+ )
1716ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  e.  RR+ )
1817rpxrd 11282 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  e.  RR* )
194blopn 21128 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR* )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  e.  J
)
208, 15, 18, 19syl3anc 1228 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  e.  J
)
21 blcntr 21041 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR+ )  ->  y  e.  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) )
228, 15, 17, 21syl3anc 1228 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  y  e.  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) )
23 opnneip 19746 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) )  e.  J  /\  y  e.  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) )  ->  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) )  e.  ( ( nei `  J ) `
 { y } ) )
247, 20, 22, 23syl3anc 1228 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  e.  ( ( nei `  J
) `  { y } ) )
25 blssm 21046 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR* )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  CC )
268, 15, 18, 25syl3anc 1228 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  CC )
2712sscls 19683 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) 
C_  CC )  -> 
( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) 
C_  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) ) )
287, 26, 27syl2anc 661 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )
29 rpxr 11252 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  r  e. 
RR* )
3029ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  r  e.  RR* )
31 rphalflt 11271 . . . . . . . . . . 11  |-  ( r  e.  RR+  ->  ( r  /  2 )  < 
r )
3231ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  <  r )
334blsscls 21135 . . . . . . . . . 10  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC )  /\  ( ( r  /  2 )  e. 
RR*  /\  r  e.  RR* 
/\  ( r  / 
2 )  <  r
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  (
y ( ball `  ( abs  o.  -  ) ) r ) )
348, 15, 18, 30, 32, 33syl23anc 1235 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  (
y ( ball `  ( abs  o.  -  ) ) r ) )
35 simprr 757 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
)
3634, 35sstrd 3509 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  x
)
3736, 13sstrd 3509 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  CC )
3812ssnei2 19743 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) )  e.  ( ( nei `  J ) `  {
y } ) )  /\  ( ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) )  C_  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  /\  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  CC ) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( nei `  J
) `  { y } ) )
397, 24, 28, 37, 38syl22anc 1229 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( nei `  J
) `  { y } ) )
40 vex 3112 . . . . . . . 8  |-  x  e. 
_V
4140elpw2 4620 . . . . . . 7  |-  ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ~P x 
<->  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  x
)
4236, 41sylibr 212 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ~P x )
4339, 42elind 3684 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) )
4412clscld 19674 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) 
C_  CC )  -> 
( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  (
Clsd `  J )
)
457, 26, 44syl2anc 661 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  (
Clsd `  J )
)
4615abscld 13278 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  ( abs `  y )  e.  RR )
4717rpred 11281 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
r  /  2 )  e.  RR )
4846, 47readdcld 9640 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( abs `  y
)  +  ( r  /  2 ) )  e.  RR )
49 eqid 2457 . . . . . . . . . 10  |-  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  =  {
w  e.  CC  | 
( y ( abs 
o.  -  ) w
)  <_  ( r  /  2 ) }
504, 49blcls 21134 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  y  e.  CC  /\  (
r  /  2 )  e.  RR* )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) } )
518, 15, 18, 50syl3anc 1228 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) } )
52 simpr 461 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  z  e.  CC )
5315adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  y  e.  CC )
5452, 53abs2difd 13299 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  z
)  -  ( abs `  y ) )  <_ 
( abs `  (
z  -  y ) ) )
5552abscld 13278 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  z )  e.  RR )
5646adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  y )  e.  RR )
5755, 56resubcld 10008 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  z
)  -  ( abs `  y ) )  e.  RR )
5852, 53subcld 9950 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
z  -  y )  e.  CC )
5958abscld 13278 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  ( z  -  y ) )  e.  RR )
6047adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
r  /  2 )  e.  RR )
61 letr 9695 . . . . . . . . . . . . 13  |-  ( ( ( ( abs `  z
)  -  ( abs `  y ) )  e.  RR  /\  ( abs `  ( z  -  y
) )  e.  RR  /\  ( r  /  2
)  e.  RR )  ->  ( ( ( ( abs `  z
)  -  ( abs `  y ) )  <_ 
( abs `  (
z  -  y ) )  /\  ( abs `  ( z  -  y
) )  <_  (
r  /  2 ) )  ->  ( ( abs `  z )  -  ( abs `  y ) )  <_  ( r  /  2 ) ) )
6257, 59, 60, 61syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( ( ( abs `  z )  -  ( abs `  y ) )  <_  ( abs `  (
z  -  y ) )  /\  ( abs `  ( z  -  y
) )  <_  (
r  /  2 ) )  ->  ( ( abs `  z )  -  ( abs `  y ) )  <_  ( r  /  2 ) ) )
6354, 62mpand 675 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  (
z  -  y ) )  <_  ( r  /  2 )  -> 
( ( abs `  z
)  -  ( abs `  y ) )  <_ 
( r  /  2
) ) )
6452, 53abssubd 13295 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  ( z  -  y ) )  =  ( abs `  (
y  -  z ) ) )
65 eqid 2457 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
6665cnmetdval 21403 . . . . . . . . . . . . . 14  |-  ( ( y  e.  CC  /\  z  e.  CC )  ->  ( y ( abs 
o.  -  ) z
)  =  ( abs `  ( y  -  z
) ) )
6715, 66sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
y ( abs  o.  -  ) z )  =  ( abs `  (
y  -  z ) ) )
6864, 67eqtr4d 2501 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  ( abs `  ( z  -  y ) )  =  ( y ( abs 
o.  -  ) z
) )
6968breq1d 4466 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( abs `  (
z  -  y ) )  <_  ( r  /  2 )  <->  ( y
( abs  o.  -  )
z )  <_  (
r  /  2 ) ) )
7055, 56, 60lesubadd2d 10172 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( ( abs `  z
)  -  ( abs `  y ) )  <_ 
( r  /  2
)  <->  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
7163, 69, 703imtr3d 267 . . . . . . . . . 10  |-  ( ( ( ( x  e.  J  /\  y  e.  x )  /\  (
r  e.  RR+  /\  (
y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  /\  z  e.  CC )  ->  (
( y ( abs 
o.  -  ) z
)  <_  ( r  /  2 )  -> 
( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
7271ralrimiva 2871 . . . . . . . . 9  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  A. z  e.  CC  ( ( y ( abs  o.  -  ) z )  <_ 
( r  /  2
)  ->  ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) ) )
73 oveq2 6304 . . . . . . . . . . 11  |-  ( w  =  z  ->  (
y ( abs  o.  -  ) w )  =  ( y ( abs  o.  -  )
z ) )
7473breq1d 4466 . . . . . . . . . 10  |-  ( w  =  z  ->  (
( y ( abs 
o.  -  ) w
)  <_  ( r  /  2 )  <->  ( y
( abs  o.  -  )
z )  <_  (
r  /  2 ) ) )
7574ralrab 3261 . . . . . . . . 9  |-  ( A. z  e.  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) )  <->  A. z  e.  CC  ( ( y ( abs  o.  -  )
z )  <_  (
r  /  2 )  ->  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
7672, 75sylibr 212 . . . . . . . 8  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  A. z  e.  { w  e.  CC  |  ( y ( abs  o.  -  )
w )  <_  (
r  /  2 ) }  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) )
77 ssralv 3560 . . . . . . . 8  |-  ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  ->  ( A. z  e.  { w  e.  CC  |  ( y ( abs  o.  -  ) w )  <_ 
( r  /  2
) }  ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) )  ->  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) ) )
7851, 76, 77sylc 60 . . . . . . 7  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) )
79 breq2 4460 . . . . . . . . 9  |-  ( s  =  ( ( abs `  y )  +  ( r  /  2 ) )  ->  ( ( abs `  z )  <_ 
s  <->  ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) ) )
8079ralbidv 2896 . . . . . . . 8  |-  ( s  =  ( ( abs `  y )  +  ( r  /  2 ) )  ->  ( A. z  e.  ( ( cls `  J ) `  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) ) ( abs `  z
)  <_  s  <->  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  (
( abs `  y
)  +  ( r  /  2 ) ) ) )
8180rspcev 3210 . . . . . . 7  |-  ( ( ( ( abs `  y
)  +  ( r  /  2 ) )  e.  RR  /\  A. z  e.  ( ( cls `  J ) `  ( y ( ball `  ( abs  o.  -  ) ) ( r  /  2 ) ) ) ( abs `  z
)  <_  ( ( abs `  y )  +  ( r  /  2
) ) )  ->  E. s  e.  RR  A. z  e.  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
)
8248, 78, 81syl2anc 661 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  E. s  e.  RR  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
)
83 eqid 2457 . . . . . . . 8  |-  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  =  ( Jt  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) ) )
841, 83cnheibor 21580 . . . . . . 7  |-  ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  C_  CC  ->  ( ( Jt  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp 
<->  ( ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) )  e.  ( Clsd `  J
)  /\  E. s  e.  RR  A. z  e.  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
) ) )
8537, 84syl 16 . . . . . 6  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  (
( Jt  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) ) )  e.  Comp  <->  ( ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  (
Clsd `  J )  /\  E. s  e.  RR  A. z  e.  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ( abs `  z )  <_  s
) ) )
8645, 82, 85mpbir2and 922 . . . . 5  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp )
87 oveq2 6304 . . . . . . 7  |-  ( u  =  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) )  -> 
( Jt  u )  =  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) ) )
8887eleq1d 2526 . . . . . 6  |-  ( u  =  ( ( cls `  J ) `  (
y ( ball `  ( abs  o.  -  ) ) ( r  /  2
) ) )  -> 
( ( Jt  u )  e.  Comp  <->  ( Jt  ( ( cls `  J ) `
 ( y (
ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp ) )
8988rspcev 3210 . . . . 5  |-  ( ( ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) )  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x )  /\  ( Jt  ( ( cls `  J
) `  ( y
( ball `  ( abs  o. 
-  ) ) ( r  /  2 ) ) ) )  e. 
Comp )  ->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  Comp )
9043, 86, 89syl2anc 661 . . . 4  |-  ( ( ( x  e.  J  /\  y  e.  x
)  /\  ( r  e.  RR+  /\  ( y ( ball `  ( abs  o.  -  ) ) r )  C_  x
) )  ->  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  Comp )
916, 90rexlimddv 2953 . . 3  |-  ( ( x  e.  J  /\  y  e.  x )  ->  E. u  e.  ( ( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  Comp )
9291rgen2 2882 . 2  |-  A. x  e.  J  A. y  e.  x  E. u  e.  ( ( ( nei `  J ) `  {
y } )  i^i 
~P x ) ( Jt  u )  e.  Comp
93 isnlly 20095 . 2  |-  ( J  e. 𝑛Locally 
Comp 
<->  ( J  e.  Top  /\ 
A. x  e.  J  A. y  e.  x  E. u  e.  (
( ( nei `  J
) `  { y } )  i^i  ~P x ) ( Jt  u )  e.  Comp )
)
942, 92, 93mpbir2an 920 1  |-  J  e. 𝑛Locally  Comp
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   {csn 4032   U.cuni 4251   class class class wbr 4456    o. ccom 5012   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508    + caddc 9512   RR*cxr 9644    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   2c2 10606   RR+crp 11245   abscabs 13078   ↾t crest 14837   TopOpenctopn 14838   *Metcxmt 18529   ballcbl 18531  ℂfldccnfld 18546   Topctop 19520   Clsdccld 19643   clsccl 19645   neicnei 19724   Compccmp 20012  𝑛Locally cnlly 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-map 7440  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-icc 11561  df-fz 11698  df-fzo 11821  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-cls 19648  df-nei 19725  df-cn 19854  df-cnp 19855  df-haus 19942  df-cmp 20013  df-nlly 20093  df-tx 20188  df-hmeo 20381  df-xms 20948  df-ms 20949  df-tms 20950  df-cncf 21507
This theorem is referenced by:  rellycmp  21582
  Copyright terms: Public domain W3C validator