MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnindis Structured version   Unicode version

Theorem cnindis 19012
Description: Every function is continuous when the codomain is indiscrete (trivial). (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnindis  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( J  Cn  { (/) ,  A } )  =  ( A  ^m  X ) )

Proof of Theorem cnindis
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpri 3995 . . . . . . 7  |-  ( x  e.  { (/) ,  A }  ->  ( x  =  (/)  \/  x  =  A ) )
2 topontop 18647 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
32ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  J  e.  Top )
4 0opn 18633 . . . . . . . . . 10  |-  ( J  e.  Top  ->  (/)  e.  J
)
53, 4syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  (/) 
e.  J )
6 imaeq2 5263 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( `' f " x )  =  ( `' f
" (/) ) )
7 ima0 5282 . . . . . . . . . . 11  |-  ( `' f " (/) )  =  (/)
86, 7syl6eq 2508 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( `' f " x )  =  (/) )
98eleq1d 2520 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( ( `' f " x
)  e.  J  <->  (/)  e.  J
) )
105, 9syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  =  (/)  ->  ( `' f "
x )  e.  J
) )
11 fimacnv 5934 . . . . . . . . . . 11  |-  ( f : X --> A  -> 
( `' f " A )  =  X )
1211adantl 466 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( `' f " A )  =  X )
13 toponmax 18649 . . . . . . . . . . 11  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1413ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  X  e.  J )
1512, 14eqeltrd 2539 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( `' f " A )  e.  J
)
16 imaeq2 5263 . . . . . . . . . 10  |-  ( x  =  A  ->  ( `' f " x
)  =  ( `' f " A ) )
1716eleq1d 2520 . . . . . . . . 9  |-  ( x  =  A  ->  (
( `' f "
x )  e.  J  <->  ( `' f " A
)  e.  J ) )
1815, 17syl5ibrcom 222 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  =  A  ->  ( `' f
" x )  e.  J ) )
1910, 18jaod 380 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( ( x  =  (/)  \/  x  =  A )  ->  ( `' f " x )  e.  J ) )
201, 19syl5 32 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  -> 
( x  e.  { (/)
,  A }  ->  ( `' f " x
)  e.  J ) )
2120ralrimiv 2820 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  /\  f : X --> A )  ->  A. x  e.  { (/) ,  A }  ( `' f " x )  e.  J )
2221ex 434 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f : X --> A  ->  A. x  e.  { (/) ,  A }  ( `' f " x )  e.  J ) )
2322pm4.71d 634 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f : X --> A  <->  ( f : X --> A  /\  A. x  e.  { (/) ,  A }  ( `' f
" x )  e.  J ) ) )
24 id 22 . . . 4  |-  ( A  e.  V  ->  A  e.  V )
25 elmapg 7327 . . . 4  |-  ( ( A  e.  V  /\  X  e.  J )  ->  ( f  e.  ( A  ^m  X )  <-> 
f : X --> A ) )
2624, 13, 25syl2anr 478 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( A  ^m  X )  <->  f : X
--> A ) )
27 indistopon 18721 . . . 4  |-  ( A  e.  V  ->  { (/) ,  A }  e.  (TopOn `  A ) )
28 iscn 18955 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  { (/)
,  A }  e.  (TopOn `  A ) )  ->  ( f  e.  ( J  Cn  { (/)
,  A } )  <-> 
( f : X --> A  /\  A. x  e. 
{ (/) ,  A } 
( `' f "
x )  e.  J
) ) )
2927, 28sylan2 474 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( J  Cn  { (/) ,  A } )  <->  ( f : X --> A  /\  A. x  e.  { (/) ,  A }  ( `' f
" x )  e.  J ) ) )
3023, 26, 293bitr4rd 286 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  (
f  e.  ( J  Cn  { (/) ,  A } )  <->  f  e.  ( A  ^m  X ) ) )
3130eqrdv 2448 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( J  Cn  { (/) ,  A } )  =  ( A  ^m  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   (/)c0 3735   {cpr 3977   `'ccnv 4937   "cima 4941   -->wf 5512   ` cfv 5516  (class class class)co 6190    ^m cmap 7314   Topctop 18614  TopOnctopon 18615    Cn ccn 18944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-fv 5524  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-map 7316  df-top 18619  df-topon 18622  df-cn 18947
This theorem is referenced by:  indishmph  19487  indistgp  19787  indispcon  27257
  Copyright terms: Public domain W3C validator