MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Unicode version

Theorem cnheiborlem 20501
Description: Lemma for cnheibor 20502. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2  |-  J  =  ( TopOpen ` fld )
cnheibor.3  |-  T  =  ( Jt  X )
cnheibor.4  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
cnheibor.5  |-  Y  =  ( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
Assertion
Ref Expression
cnheiborlem  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  T  e.  Comp )
Distinct variable groups:    x, y,
z    z, F    z, R    x, T, y, z    x, J, y, z    x, X, y, z
Allowed substitution hints:    R( x, y)    F( x, y)    Y( x, y, z)

Proof of Theorem cnheiborlem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6  |-  J  =  ( TopOpen ` fld )
21cnfldtop 20338 . . . . 5  |-  J  e. 
Top
32a1i 11 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  J  e.  Top )
4 cnheibor.4 . . . . . . . . . 10  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
54cnref1o 10978 . . . . . . . . 9  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
6 f1ofn 5637 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F  Fn  ( RR  X.  RR ) )
7 elpreima 5818 . . . . . . . . 9  |-  ( F  Fn  ( RR  X.  RR )  ->  ( u  e.  ( `' F " X )  <->  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) ) )
85, 6, 7mp2b 10 . . . . . . . 8  |-  ( u  e.  ( `' F " X )  <->  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )
9 1st2nd2 6608 . . . . . . . . . . 11  |-  ( u  e.  ( RR  X.  RR )  ->  u  = 
<. ( 1st `  u
) ,  ( 2nd `  u ) >. )
109ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
11 xp1st 6601 . . . . . . . . . . . . 13  |-  ( u  e.  ( RR  X.  RR )  ->  ( 1st `  u )  e.  RR )
1211ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  RR )
1312recnd 9404 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  CC )
1413abscld 12914 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  e.  RR )
151cnfldtopon 20337 . . . . . . . . . . . . . . . . . . . . 21  |-  J  e.  (TopOn `  CC )
1615toponunii 18512 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  U. J
1716cldss 18608 . . . . . . . . . . . . . . . . . . 19  |-  ( X  e.  ( Clsd `  J
)  ->  X  C_  CC )
1817adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  CC )
1918adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  X  C_  CC )
20 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( F `  u )  e.  X )
2119, 20sseldd 3352 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( F `  u )  e.  CC )
2221abscld 12914 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( F `  u ) )  e.  RR )
23 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  R  e.  RR )
24 simprl 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  e.  ( RR  X.  RR ) )
25 f1ocnvfv1 5978 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  u  e.  ( RR  X.  RR ) )  -> 
( `' F `  ( F `  u ) )  =  u )
265, 24, 25sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( `' F `  ( F `
 u ) )  =  u )
27 fveq2 5686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( F `  u )  ->  (
Re `  z )  =  ( Re `  ( F `  u ) ) )
28 fveq2 5686 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( F `  u )  ->  (
Im `  z )  =  ( Im `  ( F `  u ) ) )
2927, 28opeq12d 4062 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( F `  u )  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  =  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. )
304cnrecnv 12646 . . . . . . . . . . . . . . . . . . . . . 22  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
31 opex 4551 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. (
Re `  ( F `  u ) ) ,  ( Im `  ( F `  u )
) >.  e.  _V
3229, 30, 31fvmpt 5769 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  u )  e.  CC  ->  ( `' F `  ( F `
 u ) )  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3321, 32syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( `' F `  ( F `
 u ) )  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3426, 33eqtr3d 2472 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3534fveq2d 5690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  =  ( 1st `  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. ) )
36 fvex 5696 . . . . . . . . . . . . . . . . . . 19  |-  ( Re
`  ( F `  u ) )  e. 
_V
37 fvex 5696 . . . . . . . . . . . . . . . . . . 19  |-  ( Im
`  ( F `  u ) )  e. 
_V
3836, 37op1st 6580 . . . . . . . . . . . . . . . . . 18  |-  ( 1st `  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)  =  ( Re
`  ( F `  u ) )
3935, 38syl6eq 2486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  =  ( Re `  ( F `  u )
) )
4039fveq2d 5690 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  =  ( abs `  ( Re
`  ( F `  u ) ) ) )
41 absrele 12789 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )  e.  CC  ->  ( abs `  ( Re `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
4221, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( Re `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
4340, 42eqbrtrd 4307 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  <_  ( abs `  ( F `  u ) ) )
44 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  A. z  e.  X  ( abs `  z )  <_  R
)
45 fveq2 5686 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( F `  u )  ->  ( abs `  z )  =  ( abs `  ( F `  u )
) )
4645breq1d 4297 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( F `  u )  ->  (
( abs `  z
)  <_  R  <->  ( abs `  ( F `  u
) )  <_  R
) )
4746rspcv 3064 . . . . . . . . . . . . . . . 16  |-  ( ( F `  u )  e.  X  ->  ( A. z  e.  X  ( abs `  z )  <_  R  ->  ( abs `  ( F `  u ) )  <_  R ) )
4820, 44, 47sylc 60 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( F `  u ) )  <_  R )
4914, 22, 23, 43, 48letrd 9520 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  <_  R
)
5012, 23absled 12909 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( abs `  ( 1st `  u ) )  <_  R  <->  ( -u R  <_  ( 1st `  u
)  /\  ( 1st `  u )  <_  R
) ) )
5149, 50mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( -u R  <_  ( 1st `  u )  /\  ( 1st `  u )  <_  R ) )
5251simpld 459 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  <_  ( 1st `  u
) )
5351simprd 463 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  <_  R )
54 renegcl 9664 . . . . . . . . . . . . . 14  |-  ( R  e.  RR  ->  -u R  e.  RR )
5523, 54syl 16 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  e.  RR )
56 elicc2 11352 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( 1st `  u )  e.  (
-u R [,] R
)  <->  ( ( 1st `  u )  e.  RR  /\  -u R  <_  ( 1st `  u )  /\  ( 1st `  u )  <_  R ) ) )
5755, 23, 56syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( 1st `  u
)  e.  ( -u R [,] R )  <->  ( ( 1st `  u )  e.  RR  /\  -u R  <_  ( 1st `  u
)  /\  ( 1st `  u )  <_  R
) ) )
5812, 52, 53, 57mpbir3and 1171 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  ( -u R [,] R ) )
59 xp2nd 6602 . . . . . . . . . . . . 13  |-  ( u  e.  ( RR  X.  RR )  ->  ( 2nd `  u )  e.  RR )
6059ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  RR )
6160recnd 9404 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  CC )
6261abscld 12914 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  e.  RR )
6334fveq2d 5690 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  =  ( 2nd `  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. ) )
6436, 37op2nd 6581 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)  =  ( Im
`  ( F `  u ) )
6563, 64syl6eq 2486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  =  ( Im `  ( F `  u )
) )
6665fveq2d 5690 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  =  ( abs `  ( Im
`  ( F `  u ) ) ) )
67 absimle 12790 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )  e.  CC  ->  ( abs `  ( Im `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
6821, 67syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( Im `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
6966, 68eqbrtrd 4307 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  <_  ( abs `  ( F `  u ) ) )
7062, 22, 23, 69, 48letrd 9520 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  <_  R
)
7160, 23absled 12909 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( abs `  ( 2nd `  u ) )  <_  R  <->  ( -u R  <_  ( 2nd `  u
)  /\  ( 2nd `  u )  <_  R
) ) )
7270, 71mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( -u R  <_  ( 2nd `  u )  /\  ( 2nd `  u )  <_  R ) )
7372simpld 459 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  <_  ( 2nd `  u
) )
7472simprd 463 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  <_  R )
75 elicc2 11352 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( 2nd `  u )  e.  (
-u R [,] R
)  <->  ( ( 2nd `  u )  e.  RR  /\  -u R  <_  ( 2nd `  u )  /\  ( 2nd `  u )  <_  R ) ) )
7655, 23, 75syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( 2nd `  u
)  e.  ( -u R [,] R )  <->  ( ( 2nd `  u )  e.  RR  /\  -u R  <_  ( 2nd `  u
)  /\  ( 2nd `  u )  <_  R
) ) )
7760, 73, 74, 76mpbir3and 1171 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  ( -u R [,] R ) )
78 opelxpi 4866 . . . . . . . . . . 11  |-  ( ( ( 1st `  u
)  e.  ( -u R [,] R )  /\  ( 2nd `  u )  e.  ( -u R [,] R ) )  ->  <. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )
7958, 77, 78syl2anc 661 . . . . . . . . . 10  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) )
8010, 79eqeltrd 2512 . . . . . . . . 9  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )
8180ex 434 . . . . . . . 8  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
)  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
828, 81syl5bi 217 . . . . . . 7  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( u  e.  ( `' F " X )  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
8382ssrdv 3357 . . . . . 6  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
84 f1ofun 5638 . . . . . . . 8  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  Fun  F )
855, 84ax-mp 5 . . . . . . 7  |-  Fun  F
86 f1ofo 5643 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F :
( RR  X.  RR ) -onto-> CC )
87 forn 5618 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -onto-> CC  ->  ran  F  =  CC )
885, 86, 87mp2b 10 . . . . . . . 8  |-  ran  F  =  CC
8918, 88syl6sseqr 3398 . . . . . . 7  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  ran  F )
90 funimass1 5486 . . . . . . 7  |-  ( ( Fun  F  /\  X  C_ 
ran  F )  -> 
( ( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) )  ->  X  C_  ( F " ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) ) )
9185, 89, 90sylancr 663 . . . . . 6  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) )  ->  X  C_  ( F " ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) ) )
9283, 91mpd 15 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  ( F "
( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
93 cnheibor.5 . . . . 5  |-  Y  =  ( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
9492, 93syl6sseqr 3398 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  Y )
95 eqid 2438 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
964, 95, 1cnrehmeo 20500 . . . . . . 7  |-  F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) Homeo J )
97 imaexg 6510 . . . . . . 7  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) Homeo J )  -> 
( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )  e.  _V )
9896, 97ax-mp 5 . . . . . 6  |-  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  e.  _V
9993, 98eqeltri 2508 . . . . 5  |-  Y  e. 
_V
10099a1i 11 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  Y  e.  _V )
101 restabs 18744 . . . 4  |-  ( ( J  e.  Top  /\  X  C_  Y  /\  Y  e.  _V )  ->  (
( Jt  Y )t  X )  =  ( Jt  X ) )
1023, 94, 100, 101syl3anc 1218 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  =  ( Jt  X ) )
103 cnheibor.3 . . 3  |-  T  =  ( Jt  X )
104102, 103syl6eqr 2488 . 2  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  =  T )
10593oveq2i 6097 . . . . 5  |-  ( Jt  Y )  =  ( Jt  ( F " ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) ) )
106 ishmeo 19307 . . . . . . . 8  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) Homeo J )  <->  ( F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )  /\  `' F  e.  ( J  Cn  (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) ) ) )
10796, 106mpbi 208 . . . . . . 7  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  `' F  e.  ( J  Cn  (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) ) )
108107simpli 458 . . . . . 6  |-  F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )
109 iccssre 11369 . . . . . . . . . . 11  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
11054, 109mpancom 669 . . . . . . . . . 10  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  RR )
1111, 95rerest 20356 . . . . . . . . . 10  |-  ( (
-u R [,] R
)  C_  RR  ->  ( Jt  ( -u R [,] R ) )  =  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
112110, 111syl 16 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( Jt  ( -u R [,] R
) )  =  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
113112, 112oveq12d 6104 . . . . . . . 8  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  =  ( ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) ) ) )
114 retop 20315 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
115 ovex 6111 . . . . . . . . 9  |-  ( -u R [,] R )  e. 
_V
116 txrest 19179 . . . . . . . . 9  |-  ( ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( topGen `  ran  (,) )  e.  Top )  /\  (
( -u R [,] R
)  e.  _V  /\  ( -u R [,] R
)  e.  _V )
)  ->  ( (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  =  ( ( ( topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) ) )
117114, 114, 115, 115, 116mp4an 673 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  =  ( ( ( topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
118113, 117syl6eqr 2488 . . . . . . 7  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  =  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
119 eqid 2438 . . . . . . . . . . 11  |-  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )  =  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )
12095, 119icccmp 20377 . . . . . . . . . 10  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( topGen ` 
ran  (,) )t  ( -u R [,] R ) )  e. 
Comp )
12154, 120mpancom 669 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
( topGen `  ran  (,) )t  ( -u R [,] R ) )  e.  Comp )
122112, 121eqeltrd 2512 . . . . . . . 8  |-  ( R  e.  RR  ->  ( Jt  ( -u R [,] R
) )  e.  Comp )
123 txcmp 19191 . . . . . . . 8  |-  ( ( ( Jt  ( -u R [,] R ) )  e. 
Comp  /\  ( Jt  ( -u R [,] R ) )  e.  Comp )  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  e.  Comp )
124122, 122, 123syl2anc 661 . . . . . . 7  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  e.  Comp )
125118, 124eqeltrrd 2513 . . . . . 6  |-  ( R  e.  RR  ->  (
( ( topGen `  ran  (,) )  tX  ( topGen ` 
ran  (,) ) )t  ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) )  e.  Comp )
126 imacmp 18975 . . . . . 6  |-  ( ( F  e.  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  e.  Comp )  ->  ( Jt  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )  e.  Comp )
127108, 125, 126sylancr 663 . . . . 5  |-  ( R  e.  RR  ->  ( Jt  ( F " ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) ) )  e.  Comp )
128105, 127syl5eqel 2522 . . . 4  |-  ( R  e.  RR  ->  ( Jt  Y )  e.  Comp )
129128ad2antrl 727 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( Jt  Y )  e.  Comp )
130 imassrn 5175 . . . . . . 7  |-  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) 
C_  ran  F
13193, 130eqsstri 3381 . . . . . 6  |-  Y  C_  ran  F
132 f1of 5636 . . . . . . 7  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F :
( RR  X.  RR )
--> CC )
133 frn 5560 . . . . . . 7  |-  ( F : ( RR  X.  RR ) --> CC  ->  ran  F 
C_  CC )
1345, 132, 133mp2b 10 . . . . . 6  |-  ran  F  C_  CC
135131, 134sstri 3360 . . . . 5  |-  Y  C_  CC
136135a1i 11 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  Y  C_  CC )
137 simpl 457 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  e.  ( Clsd `  J ) )
13816restcldi 18752 . . . 4  |-  ( ( Y  C_  CC  /\  X  e.  ( Clsd `  J
)  /\  X  C_  Y
)  ->  X  e.  ( Clsd `  ( Jt  Y
) ) )
139136, 137, 94, 138syl3anc 1218 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  e.  ( Clsd `  ( Jt  Y ) ) )
140 cmpcld 18980 . . 3  |-  ( ( ( Jt  Y )  e.  Comp  /\  X  e.  ( Clsd `  ( Jt  Y ) ) )  ->  ( ( Jt  Y )t  X )  e.  Comp )
141129, 139, 140syl2anc 661 . 2  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  e.  Comp )
142104, 141eqeltrrd 2513 1  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  T  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   _Vcvv 2967    C_ wss 3323   <.cop 3878   class class class wbr 4287    X. cxp 4833   `'ccnv 4834   ran crn 4836   "cima 4838   Fun wfun 5407    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6086    e. cmpt2 6088   1stc1st 6570   2ndc2nd 6571   CCcc 9272   RRcr 9273   _ici 9276    + caddc 9277    x. cmul 9279    <_ cle 9411   -ucneg 9588   (,)cioo 11292   [,]cicc 11295   Recre 12578   Imcim 12579   abscabs 12715   ↾t crest 14351   TopOpenctopn 14352   topGenctg 14368  ℂfldccnfld 17793   Topctop 18473   Clsdccld 18595    Cn ccn 18803   Compccmp 18964    tX ctx 19108   Homeochmeo 19301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ioo 11296  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-submnd 15457  df-mulg 15539  df-cntz 15826  df-cmn 16270  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-cnfld 17794  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-cn 18806  df-cnp 18807  df-cmp 18965  df-tx 19110  df-hmeo 19303  df-xms 19870  df-ms 19871  df-tms 19872  df-cncf 20429
This theorem is referenced by:  cnheibor  20502
  Copyright terms: Public domain W3C validator