MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheiborlem Structured version   Unicode version

Theorem cnheiborlem 20661
Description: Lemma for cnheibor 20662. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2  |-  J  =  ( TopOpen ` fld )
cnheibor.3  |-  T  =  ( Jt  X )
cnheibor.4  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
cnheibor.5  |-  Y  =  ( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
Assertion
Ref Expression
cnheiborlem  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  T  e.  Comp )
Distinct variable groups:    x, y,
z    z, F    z, R    x, T, y, z    x, J, y, z    x, X, y, z
Allowed substitution hints:    R( x, y)    F( x, y)    Y( x, y, z)

Proof of Theorem cnheiborlem
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6  |-  J  =  ( TopOpen ` fld )
21cnfldtop 20498 . . . . 5  |-  J  e. 
Top
32a1i 11 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  J  e.  Top )
4 cnheibor.4 . . . . . . . . . 10  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
54cnref1o 11100 . . . . . . . . 9  |-  F :
( RR  X.  RR )
-1-1-onto-> CC
6 f1ofn 5753 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F  Fn  ( RR  X.  RR ) )
7 elpreima 5935 . . . . . . . . 9  |-  ( F  Fn  ( RR  X.  RR )  ->  ( u  e.  ( `' F " X )  <->  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) ) )
85, 6, 7mp2b 10 . . . . . . . 8  |-  ( u  e.  ( `' F " X )  <->  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )
9 1st2nd2 6726 . . . . . . . . . . 11  |-  ( u  e.  ( RR  X.  RR )  ->  u  = 
<. ( 1st `  u
) ,  ( 2nd `  u ) >. )
109ad2antrl 727 . . . . . . . . . 10  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
11 xp1st 6719 . . . . . . . . . . . . 13  |-  ( u  e.  ( RR  X.  RR )  ->  ( 1st `  u )  e.  RR )
1211ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  RR )
1312recnd 9526 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  CC )
1413abscld 13043 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  e.  RR )
151cnfldtopon 20497 . . . . . . . . . . . . . . . . . . . . 21  |-  J  e.  (TopOn `  CC )
1615toponunii 18672 . . . . . . . . . . . . . . . . . . . 20  |-  CC  =  U. J
1716cldss 18768 . . . . . . . . . . . . . . . . . . 19  |-  ( X  e.  ( Clsd `  J
)  ->  X  C_  CC )
1817adantr 465 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  CC )
1918adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  X  C_  CC )
20 simprr 756 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( F `  u )  e.  X )
2119, 20sseldd 3468 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( F `  u )  e.  CC )
2221abscld 13043 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( F `  u ) )  e.  RR )
23 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  R  e.  RR )
24 simprl 755 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  e.  ( RR  X.  RR ) )
25 f1ocnvfv1 6095 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : ( RR 
X.  RR ) -1-1-onto-> CC  /\  u  e.  ( RR  X.  RR ) )  -> 
( `' F `  ( F `  u ) )  =  u )
265, 24, 25sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( `' F `  ( F `
 u ) )  =  u )
27 fveq2 5802 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( F `  u )  ->  (
Re `  z )  =  ( Re `  ( F `  u ) ) )
28 fveq2 5802 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( F `  u )  ->  (
Im `  z )  =  ( Im `  ( F `  u ) ) )
2927, 28opeq12d 4178 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  =  ( F `  u )  ->  <. (
Re `  z ) ,  ( Im `  z ) >.  =  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. )
304cnrecnv 12775 . . . . . . . . . . . . . . . . . . . . . 22  |-  `' F  =  ( z  e.  CC  |->  <. ( Re `  z ) ,  ( Im `  z )
>. )
31 opex 4667 . . . . . . . . . . . . . . . . . . . . . 22  |-  <. (
Re `  ( F `  u ) ) ,  ( Im `  ( F `  u )
) >.  e.  _V
3229, 30, 31fvmpt 5886 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F `  u )  e.  CC  ->  ( `' F `  ( F `
 u ) )  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3321, 32syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( `' F `  ( F `
 u ) )  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3426, 33eqtr3d 2497 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  =  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)
3534fveq2d 5806 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  =  ( 1st `  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. ) )
36 fvex 5812 . . . . . . . . . . . . . . . . . . 19  |-  ( Re
`  ( F `  u ) )  e. 
_V
37 fvex 5812 . . . . . . . . . . . . . . . . . . 19  |-  ( Im
`  ( F `  u ) )  e. 
_V
3836, 37op1st 6698 . . . . . . . . . . . . . . . . . 18  |-  ( 1st `  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)  =  ( Re
`  ( F `  u ) )
3935, 38syl6eq 2511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  =  ( Re `  ( F `  u )
) )
4039fveq2d 5806 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  =  ( abs `  ( Re
`  ( F `  u ) ) ) )
41 absrele 12918 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )  e.  CC  ->  ( abs `  ( Re `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
4221, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( Re `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
4340, 42eqbrtrd 4423 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  <_  ( abs `  ( F `  u ) ) )
44 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  A. z  e.  X  ( abs `  z )  <_  R
)
45 fveq2 5802 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  ( F `  u )  ->  ( abs `  z )  =  ( abs `  ( F `  u )
) )
4645breq1d 4413 . . . . . . . . . . . . . . . . 17  |-  ( z  =  ( F `  u )  ->  (
( abs `  z
)  <_  R  <->  ( abs `  ( F `  u
) )  <_  R
) )
4746rspcv 3175 . . . . . . . . . . . . . . . 16  |-  ( ( F `  u )  e.  X  ->  ( A. z  e.  X  ( abs `  z )  <_  R  ->  ( abs `  ( F `  u ) )  <_  R ) )
4820, 44, 47sylc 60 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( F `  u ) )  <_  R )
4914, 22, 23, 43, 48letrd 9642 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 1st `  u
) )  <_  R
)
5012, 23absled 13038 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( abs `  ( 1st `  u ) )  <_  R  <->  ( -u R  <_  ( 1st `  u
)  /\  ( 1st `  u )  <_  R
) ) )
5149, 50mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( -u R  <_  ( 1st `  u )  /\  ( 1st `  u )  <_  R ) )
5251simpld 459 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  <_  ( 1st `  u
) )
5351simprd 463 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  <_  R )
54 renegcl 9786 . . . . . . . . . . . . . 14  |-  ( R  e.  RR  ->  -u R  e.  RR )
5523, 54syl 16 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  e.  RR )
56 elicc2 11474 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( 1st `  u )  e.  (
-u R [,] R
)  <->  ( ( 1st `  u )  e.  RR  /\  -u R  <_  ( 1st `  u )  /\  ( 1st `  u )  <_  R ) ) )
5755, 23, 56syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( 1st `  u
)  e.  ( -u R [,] R )  <->  ( ( 1st `  u )  e.  RR  /\  -u R  <_  ( 1st `  u
)  /\  ( 1st `  u )  <_  R
) ) )
5812, 52, 53, 57mpbir3and 1171 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 1st `  u )  e.  ( -u R [,] R ) )
59 xp2nd 6720 . . . . . . . . . . . . 13  |-  ( u  e.  ( RR  X.  RR )  ->  ( 2nd `  u )  e.  RR )
6059ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  RR )
6160recnd 9526 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  CC )
6261abscld 13043 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  e.  RR )
6334fveq2d 5806 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  =  ( 2nd `  <. ( Re `  ( F `
 u ) ) ,  ( Im `  ( F `  u ) ) >. ) )
6436, 37op2nd 6699 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. ( Re `  ( F `  u ) ) ,  ( Im
`  ( F `  u ) ) >.
)  =  ( Im
`  ( F `  u ) )
6563, 64syl6eq 2511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  =  ( Im `  ( F `  u )
) )
6665fveq2d 5806 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  =  ( abs `  ( Im
`  ( F `  u ) ) ) )
67 absimle 12919 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  u )  e.  CC  ->  ( abs `  ( Im `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
6821, 67syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( Im `  ( F `  u ) ) )  <_  ( abs `  ( F `  u ) ) )
6966, 68eqbrtrd 4423 . . . . . . . . . . . . . . 15  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  <_  ( abs `  ( F `  u ) ) )
7062, 22, 23, 69, 48letrd 9642 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( abs `  ( 2nd `  u
) )  <_  R
)
7160, 23absled 13038 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( abs `  ( 2nd `  u ) )  <_  R  <->  ( -u R  <_  ( 2nd `  u
)  /\  ( 2nd `  u )  <_  R
) ) )
7270, 71mpbid 210 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( -u R  <_  ( 2nd `  u )  /\  ( 2nd `  u )  <_  R ) )
7372simpld 459 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  -u R  <_  ( 2nd `  u
) )
7472simprd 463 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  <_  R )
75 elicc2 11474 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( 2nd `  u )  e.  (
-u R [,] R
)  <->  ( ( 2nd `  u )  e.  RR  /\  -u R  <_  ( 2nd `  u )  /\  ( 2nd `  u )  <_  R ) ) )
7655, 23, 75syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  (
( 2nd `  u
)  e.  ( -u R [,] R )  <->  ( ( 2nd `  u )  e.  RR  /\  -u R  <_  ( 2nd `  u
)  /\  ( 2nd `  u )  <_  R
) ) )
7760, 73, 74, 76mpbir3and 1171 . . . . . . . . . . 11  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  ( 2nd `  u )  e.  ( -u R [,] R ) )
78 opelxpi 4982 . . . . . . . . . . 11  |-  ( ( ( 1st `  u
)  e.  ( -u R [,] R )  /\  ( 2nd `  u )  e.  ( -u R [,] R ) )  ->  <. ( 1st `  u
) ,  ( 2nd `  u ) >.  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )
7958, 77, 78syl2anc 661 . . . . . . . . . 10  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  <. ( 1st `  u ) ,  ( 2nd `  u
) >.  e.  ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) )
8010, 79eqeltrd 2542 . . . . . . . . 9  |-  ( ( ( X  e.  (
Clsd `  J )  /\  ( R  e.  RR  /\ 
A. z  e.  X  ( abs `  z )  <_  R ) )  /\  ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
) )  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )
8180ex 434 . . . . . . . 8  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( u  e.  ( RR  X.  RR )  /\  ( F `  u )  e.  X
)  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
828, 81syl5bi 217 . . . . . . 7  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( u  e.  ( `' F " X )  ->  u  e.  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
8382ssrdv 3473 . . . . . 6  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
84 f1ofun 5754 . . . . . . . 8  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  Fun  F )
855, 84ax-mp 5 . . . . . . 7  |-  Fun  F
86 f1ofo 5759 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F :
( RR  X.  RR ) -onto-> CC )
87 forn 5734 . . . . . . . . 9  |-  ( F : ( RR  X.  RR ) -onto-> CC  ->  ran  F  =  CC )
885, 86, 87mp2b 10 . . . . . . . 8  |-  ran  F  =  CC
8918, 88syl6sseqr 3514 . . . . . . 7  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  ran  F )
90 funimass1 5602 . . . . . . 7  |-  ( ( Fun  F  /\  X  C_ 
ran  F )  -> 
( ( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) )  ->  X  C_  ( F " ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) ) )
9185, 89, 90sylancr 663 . . . . . 6  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( `' F " X )  C_  (
( -u R [,] R
)  X.  ( -u R [,] R ) )  ->  X  C_  ( F " ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) ) )
9283, 91mpd 15 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  ( F "
( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
93 cnheibor.5 . . . . 5  |-  Y  =  ( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )
9492, 93syl6sseqr 3514 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  C_  Y )
95 eqid 2454 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
964, 95, 1cnrehmeo 20660 . . . . . . 7  |-  F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) Homeo J )
97 imaexg 6628 . . . . . . 7  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) Homeo J )  -> 
( F " (
( -u R [,] R
)  X.  ( -u R [,] R ) ) )  e.  _V )
9896, 97ax-mp 5 . . . . . 6  |-  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  e.  _V
9993, 98eqeltri 2538 . . . . 5  |-  Y  e. 
_V
10099a1i 11 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  Y  e.  _V )
101 restabs 18904 . . . 4  |-  ( ( J  e.  Top  /\  X  C_  Y  /\  Y  e.  _V )  ->  (
( Jt  Y )t  X )  =  ( Jt  X ) )
1023, 94, 100, 101syl3anc 1219 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  =  ( Jt  X ) )
103 cnheibor.3 . . 3  |-  T  =  ( Jt  X )
104102, 103syl6eqr 2513 . 2  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  =  T )
10593oveq2i 6214 . . . . 5  |-  ( Jt  Y )  =  ( Jt  ( F " ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) ) )
106 ishmeo 19467 . . . . . . . 8  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) Homeo J )  <->  ( F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )  /\  `' F  e.  ( J  Cn  (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) ) ) )
10796, 106mpbi 208 . . . . . . 7  |-  ( F  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  `' F  e.  ( J  Cn  (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) ) )
108107simpli 458 . . . . . 6  |-  F  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )
109 iccssre 11491 . . . . . . . . . . 11  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( -u R [,] R )  C_  RR )
11054, 109mpancom 669 . . . . . . . . . 10  |-  ( R  e.  RR  ->  ( -u R [,] R ) 
C_  RR )
1111, 95rerest 20516 . . . . . . . . . 10  |-  ( (
-u R [,] R
)  C_  RR  ->  ( Jt  ( -u R [,] R ) )  =  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
112110, 111syl 16 . . . . . . . . 9  |-  ( R  e.  RR  ->  ( Jt  ( -u R [,] R
) )  =  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
113112, 112oveq12d 6221 . . . . . . . 8  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  =  ( ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) ) ) )
114 retop 20475 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  e.  Top
115 ovex 6228 . . . . . . . . 9  |-  ( -u R [,] R )  e. 
_V
116 txrest 19339 . . . . . . . . 9  |-  ( ( ( ( topGen `  ran  (,) )  e.  Top  /\  ( topGen `  ran  (,) )  e.  Top )  /\  (
( -u R [,] R
)  e.  _V  /\  ( -u R [,] R
)  e.  _V )
)  ->  ( (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  =  ( ( ( topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) ) )
117114, 114, 115, 115, 116mp4an 673 . . . . . . . 8  |-  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  =  ( ( ( topGen `  ran  (,) )t  ( -u R [,] R ) )  tX  ( ( topGen `  ran  (,) )t  ( -u R [,] R ) ) )
118113, 117syl6eqr 2513 . . . . . . 7  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  =  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )
119 eqid 2454 . . . . . . . . . . 11  |-  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )  =  ( (
topGen `  ran  (,) )t  ( -u R [,] R ) )
12095, 119icccmp 20537 . . . . . . . . . 10  |-  ( (
-u R  e.  RR  /\  R  e.  RR )  ->  ( ( topGen ` 
ran  (,) )t  ( -u R [,] R ) )  e. 
Comp )
12154, 120mpancom 669 . . . . . . . . 9  |-  ( R  e.  RR  ->  (
( topGen `  ran  (,) )t  ( -u R [,] R ) )  e.  Comp )
122112, 121eqeltrd 2542 . . . . . . . 8  |-  ( R  e.  RR  ->  ( Jt  ( -u R [,] R
) )  e.  Comp )
123 txcmp 19351 . . . . . . . 8  |-  ( ( ( Jt  ( -u R [,] R ) )  e. 
Comp  /\  ( Jt  ( -u R [,] R ) )  e.  Comp )  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  e.  Comp )
124122, 122, 123syl2anc 661 . . . . . . 7  |-  ( R  e.  RR  ->  (
( Jt  ( -u R [,] R ) )  tX  ( Jt  ( -u R [,] R ) ) )  e.  Comp )
125118, 124eqeltrrd 2543 . . . . . 6  |-  ( R  e.  RR  ->  (
( ( topGen `  ran  (,) )  tX  ( topGen ` 
ran  (,) ) )t  ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) )  e.  Comp )
126 imacmp 19135 . . . . . 6  |-  ( ( F  e.  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)t  ( ( -u R [,] R )  X.  ( -u R [,] R ) ) )  e.  Comp )  ->  ( Jt  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) )  e.  Comp )
127108, 125, 126sylancr 663 . . . . 5  |-  ( R  e.  RR  ->  ( Jt  ( F " ( (
-u R [,] R
)  X.  ( -u R [,] R ) ) ) )  e.  Comp )
128105, 127syl5eqel 2546 . . . 4  |-  ( R  e.  RR  ->  ( Jt  Y )  e.  Comp )
129128ad2antrl 727 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( Jt  Y )  e.  Comp )
130 imassrn 5291 . . . . . . 7  |-  ( F
" ( ( -u R [,] R )  X.  ( -u R [,] R ) ) ) 
C_  ran  F
13193, 130eqsstri 3497 . . . . . 6  |-  Y  C_  ran  F
132 f1of 5752 . . . . . . 7  |-  ( F : ( RR  X.  RR ) -1-1-onto-> CC  ->  F :
( RR  X.  RR )
--> CC )
133 frn 5676 . . . . . . 7  |-  ( F : ( RR  X.  RR ) --> CC  ->  ran  F 
C_  CC )
1345, 132, 133mp2b 10 . . . . . 6  |-  ran  F  C_  CC
135131, 134sstri 3476 . . . . 5  |-  Y  C_  CC
136135a1i 11 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  Y  C_  CC )
137 simpl 457 . . . 4  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  e.  ( Clsd `  J ) )
13816restcldi 18912 . . . 4  |-  ( ( Y  C_  CC  /\  X  e.  ( Clsd `  J
)  /\  X  C_  Y
)  ->  X  e.  ( Clsd `  ( Jt  Y
) ) )
139136, 137, 94, 138syl3anc 1219 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  X  e.  ( Clsd `  ( Jt  Y ) ) )
140 cmpcld 19140 . . 3  |-  ( ( ( Jt  Y )  e.  Comp  /\  X  e.  ( Clsd `  ( Jt  Y ) ) )  ->  ( ( Jt  Y )t  X )  e.  Comp )
141129, 139, 140syl2anc 661 . 2  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  -> 
( ( Jt  Y )t  X )  e.  Comp )
142104, 141eqeltrrd 2543 1  |-  ( ( X  e.  ( Clsd `  J )  /\  ( R  e.  RR  /\  A. z  e.  X  ( abs `  z )  <_  R ) )  ->  T  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2799   _Vcvv 3078    C_ wss 3439   <.cop 3994   class class class wbr 4403    X. cxp 4949   `'ccnv 4950   ran crn 4952   "cima 4954   Fun wfun 5523    Fn wfn 5524   -->wf 5525   -onto->wfo 5527   -1-1-onto->wf1o 5528   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   1stc1st 6688   2ndc2nd 6689   CCcc 9394   RRcr 9395   _ici 9398    + caddc 9399    x. cmul 9401    <_ cle 9533   -ucneg 9710   (,)cioo 11414   [,]cicc 11417   Recre 12707   Imcim 12708   abscabs 12844   ↾t crest 14481   TopOpenctopn 14482   topGenctg 14498  ℂfldccnfld 17946   Topctop 18633   Clsdccld 18755    Cn ccn 18963   Compccmp 19124    tX ctx 19268   Homeochmeo 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-inf2 7961  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474  ax-addf 9475  ax-mulf 9476
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-se 4791  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-isom 5538  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-of 6433  df-om 6590  df-1st 6690  df-2nd 6691  df-supp 6804  df-recs 6945  df-rdg 6979  df-1o 7033  df-2o 7034  df-oadd 7037  df-er 7214  df-map 7329  df-ixp 7377  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-fsupp 7735  df-fi 7775  df-sup 7805  df-oi 7838  df-card 8223  df-cda 8451  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-4 10496  df-5 10497  df-6 10498  df-7 10499  df-8 10500  df-9 10501  df-10 10502  df-n0 10694  df-z 10761  df-dec 10870  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-ioo 11418  df-icc 11421  df-fz 11558  df-fzo 11669  df-seq 11927  df-exp 11986  df-hash 12224  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-struct 14297  df-ndx 14298  df-slot 14299  df-base 14300  df-sets 14301  df-ress 14302  df-plusg 14373  df-mulr 14374  df-starv 14375  df-sca 14376  df-vsca 14377  df-ip 14378  df-tset 14379  df-ple 14380  df-ds 14382  df-unif 14383  df-hom 14384  df-cco 14385  df-rest 14483  df-topn 14484  df-0g 14502  df-gsum 14503  df-topgen 14504  df-pt 14505  df-prds 14508  df-xrs 14562  df-qtop 14567  df-imas 14568  df-xps 14570  df-mre 14646  df-mrc 14647  df-acs 14649  df-mnd 15537  df-submnd 15587  df-mulg 15670  df-cntz 15957  df-cmn 16403  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-cnfld 17947  df-top 18638  df-bases 18640  df-topon 18641  df-topsp 18642  df-cld 18758  df-cn 18966  df-cnp 18967  df-cmp 19125  df-tx 19270  df-hmeo 19463  df-xms 20030  df-ms 20031  df-tms 20032  df-cncf 20589
This theorem is referenced by:  cnheibor  20662
  Copyright terms: Public domain W3C validator