MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Unicode version

Theorem cnheibor 20369
Description: Heine-Borel theorem for complex numbers. A subset of  CC is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2  |-  J  =  ( TopOpen ` fld )
cnheibor.3  |-  T  =  ( Jt  X )
Assertion
Ref Expression
cnheibor  |-  ( X 
C_  CC  ->  ( T  e.  Comp  <->  ( X  e.  ( Clsd `  J
)  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
) )
Distinct variable groups:    x, r, T    J, r, x    X, r, x

Proof of Theorem cnheibor
Dummy variables  f 
s  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6  |-  J  =  ( TopOpen ` fld )
21cnfldhaus 20206 . . . . 5  |-  J  e. 
Haus
32a1i 11 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  J  e.  Haus )
4 simpl 454 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  C_  CC )
5 cnheibor.3 . . . . 5  |-  T  =  ( Jt  X )
6 simpr 458 . . . . 5  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  T  e.  Comp )
75, 6syl5eqelr 2518 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( Jt  X )  e.  Comp )
81cnfldtopon 20204 . . . . . 6  |-  J  e.  (TopOn `  CC )
98toponunii 18379 . . . . 5  |-  CC  =  U. J
109hauscmp 18852 . . . 4  |-  ( ( J  e.  Haus  /\  X  C_  CC  /\  ( Jt  X )  e.  Comp )  ->  X  e.  ( Clsd `  J ) )
113, 4, 7, 10syl3anc 1211 . . 3  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  e.  ( Clsd `  J
) )
121cnfldtop 20205 . . . . . . . . . . 11  |-  J  e. 
Top
139restuni 18608 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  C_  CC )  ->  X  =  U. ( Jt  X ) )
1412, 4, 13sylancr 656 . . . . . . . . . 10  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  =  U. ( Jt  X ) )
155unieqi 4088 . . . . . . . . . 10  |-  U. T  =  U. ( Jt  X )
1614, 15syl6eqr 2483 . . . . . . . . 9  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  =  U. T )
1716eleq2d 2500 . . . . . . . 8  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  (
x  e.  X  <->  x  e.  U. T ) )
1817biimpar 482 . . . . . . 7  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  U. T
)  ->  x  e.  X )
1912a1i 11 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  J  e.  Top )
20 cnex 9351 . . . . . . . . . . . 12  |-  CC  e.  _V
21 ssexg 4426 . . . . . . . . . . . 12  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
224, 20, 21sylancl 655 . . . . . . . . . . 11  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  e.  _V )
2322adantr 462 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  X  e.  _V )
24 cnxmet 20194 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2524a1i 11 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs  o. 
-  )  e.  ( *Met `  CC ) )
26 0cnd 9367 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  0  e.  CC )
274sselda 3344 . . . . . . . . . . . . . 14  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  CC )
2827abscld 12906 . . . . . . . . . . . . 13  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs `  x )  e.  RR )
29 peano2re 9530 . . . . . . . . . . . . 13  |-  ( ( abs `  x )  e.  RR  ->  (
( abs `  x
)  +  1 )  e.  RR )
3028, 29syl 16 . . . . . . . . . . . 12  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR )
3130rexrd 9421 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR* )
321cnfldtopn 20203 . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
3332blopn 19917 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( abs `  x
)  +  1 )  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )
3425, 26, 31, 33syl3anc 1211 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )
35 elrestr 14350 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  e.  _V  /\  (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )  ->  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  ( Jt  X ) )
3619, 23, 34, 35syl3anc 1211 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  ( Jt  X ) )
3736, 5syl6eleqr 2524 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  T )
38 0cn 9366 . . . . . . . . . . . . . 14  |-  0  e.  CC
39 eqid 2433 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4039cnmetdval 20192 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 ( abs 
o.  -  ) x
)  =  ( abs `  ( 0  -  x
) ) )
4138, 40mpan 663 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
0 ( abs  o.  -  ) x )  =  ( abs `  (
0  -  x ) ) )
42 df-neg 9586 . . . . . . . . . . . . . . 15  |-  -u x  =  ( 0  -  x )
4342fveq2i 5682 . . . . . . . . . . . . . 14  |-  ( abs `  -u x )  =  ( abs `  (
0  -  x ) )
44 absneg 12750 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( abs `  -u x )  =  ( abs `  x
) )
4543, 44syl5eqr 2479 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( abs `  ( 0  -  x ) )  =  ( abs `  x
) )
4641, 45eqtrd 2465 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
0 ( abs  o.  -  ) x )  =  ( abs `  x
) )
4727, 46syl 16 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( abs  o.  -  ) x )  =  ( abs `  x
) )
4828ltp1d 10251 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs `  x )  <  (
( abs `  x
)  +  1 ) )
4947, 48eqbrtrd 4300 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( abs  o.  -  ) x )  < 
( ( abs `  x
)  +  1 ) )
50 elbl 19805 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( abs `  x
)  +  1 )  e.  RR* )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( ( abs `  x
)  +  1 ) ) ) )
5125, 26, 31, 50syl3anc 1211 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  <-> 
( x  e.  CC  /\  ( 0 ( abs 
o.  -  ) x
)  <  ( ( abs `  x )  +  1 ) ) ) )
5227, 49, 51mpbir2and 906 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) ) )
53 simpr 458 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  X )
5452, 53elind 3528 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )
5527absge0d 12914 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  0  <_  ( abs `  x ) )
5628, 55ge0p1rpd 11041 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR+ )
57 eqid 2433 . . . . . . . . 9  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )
58 oveq2 6088 . . . . . . . . . . . 12  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( 0 ( ball `  ( abs  o.  -  ) ) r )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) ) )
5958ineq1d 3539 . . . . . . . . . . 11  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
)  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )
6059eqeq2d 2444 . . . . . . . . . 10  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X )  <-> 
( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) ) )
6160rspcev 3062 . . . . . . . . 9  |-  ( ( ( ( abs `  x
)  +  1 )  e.  RR+  /\  (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )  ->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) )
6256, 57, 61sylancl 655 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) )
63 eleq2 2494 . . . . . . . . . 10  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( x  e.  u  <->  x  e.  (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X ) ) )
64 eqeq1 2439 . . . . . . . . . . 11  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X )  <-> 
( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6564rexbidv 2726 . . . . . . . . . 10  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X )  <->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6663, 65anbi12d 703 . . . . . . . . 9  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X ) )  <->  ( x  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  /\  E. r  e.  RR+  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) ) )
6766rspcev 3062 . . . . . . . 8  |-  ( ( ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  T  /\  (
x  e.  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  /\  E. r  e.  RR+  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6837, 54, 62, 67syl12anc 1209 . . . . . . 7  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
6918, 68syldan 467 . . . . . 6  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  U. T
)  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
7069ralrimiva 2789 . . . . 5  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  A. x  e.  U. T E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
71 eqid 2433 . . . . . 6  |-  U. T  =  U. T
72 oveq2 6088 . . . . . . . 8  |-  ( r  =  ( f `  u )  ->  (
0 ( ball `  ( abs  o.  -  ) ) r )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) ) )
7372ineq1d 3539 . . . . . . 7  |-  ( r  =  ( f `  u )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) )
7473eqeq2d 2444 . . . . . 6  |-  ( r  =  ( f `  u )  ->  (
u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
)  <->  u  =  (
( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 u ) )  i^i  X ) ) )
7571, 74cmpcovf 18836 . . . . 5  |-  ( ( T  e.  Comp  /\  A. x  e.  U. T E. u  e.  T  (
x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )  ->  E. s  e.  ( ~P T  i^i  Fin )
( U. T  = 
U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) ) )
766, 70, 75syl2anc 654 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  E. s  e.  ( ~P T  i^i  Fin ) ( U. T  =  U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) ) )
77 inss2 3559 . . . . . . . . . . 11  |-  ( ~P T  i^i  Fin )  C_ 
Fin
78 simpllr 751 . . . . . . . . . . 11  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
s  e.  ( ~P T  i^i  Fin )
)
7977, 78sseldi 3342 . . . . . . . . . 10  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
s  e.  Fin )
80 ffvelrn 5829 . . . . . . . . . . . . 13  |-  ( ( f : s --> RR+  /\  u  e.  s )  ->  ( f `  u )  e.  RR+ )
8180rpred 11015 . . . . . . . . . . . 12  |-  ( ( f : s --> RR+  /\  u  e.  s )  ->  ( f `  u )  e.  RR )
8281ralrimiva 2789 . . . . . . . . . . 11  |-  ( f : s --> RR+  ->  A. u  e.  s  ( f `  u )  e.  RR )
8382ad2antrl 720 . . . . . . . . . 10  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  A. u  e.  s 
( f `  u
)  e.  RR )
84 fimaxre3 10267 . . . . . . . . . 10  |-  ( ( s  e.  Fin  /\  A. u  e.  s  ( f `  u )  e.  RR )  ->  E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r )
8579, 83, 84syl2anc 654 . . . . . . . . 9  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r )
8616ad4antr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  X  =  U. T )
87 simpllr 751 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  U. T  = 
U. s )
8886, 87eqtrd 2465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  X  =  U. s )
8988eleq2d 2500 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  <->  x  e.  U. s
) )
90 eluni2 4083 . . . . . . . . . . . . . 14  |-  ( x  e.  U. s  <->  E. z  e.  s  x  e.  z )
9189, 90syl6bb 261 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  <->  E. z  e.  s  x  e.  z ) )
92 elssuni 4109 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  s  ->  z  C_ 
U. s )
9392ad2antrl 720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  U. s
)
9488adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  X  =  U. s
)
9593, 94sseqtr4d 3381 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  X )
96 simp-6l 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  X  C_  CC )
9795, 96sstrd 3354 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  CC )
98 simprr 749 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  z )
9997, 98sseldd 3345 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  CC )
10099abscld 12906 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  e.  RR )
101 simplrl 752 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
r  e.  RR )
102 simprl 748 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
f : s --> RR+ )
103102ad2antrr 718 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
f : s --> RR+ )
104 simprl 748 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  e.  s )
105103, 104ffvelrnd 5832 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR+ )
106105rpred 11015 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR )
10799, 46syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( 0 ( abs 
o.  -  ) x
)  =  ( abs `  x ) )
108 inss1 3558 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
)  C_  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )
109 simprr 749 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )
110109ad2antrr 718 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )
111 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  z  ->  u  =  z )
112 fveq2 5679 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
113112oveq2d 6096 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( u  =  z  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) ) )
114113ineq1d 3539 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  z  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 u ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  z ) )  i^i  X ) )
115111, 114eqeq12d 2447 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  z  ->  (
u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
)  <->  z  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 z ) )  i^i  X ) ) )
116115rspcv 3058 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( z  e.  s  ->  ( A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
)  ->  z  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  z ) )  i^i  X ) ) )
117104, 110, 116sylc 60 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
) )
11898, 117eleqtrd 2509 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
) )
119108, 118sseldi 3342 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) ) )
12024a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
121 0cnd 9367 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
0  e.  CC )
122105rpxrd 11016 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR* )
123 elbl 19805 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
f `  z )  e.  RR* )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( f `  z
) ) ) )
124120, 121, 122, 123syl3anc 1211 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( f `  z
) ) ) )
125119, 124mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( x  e.  CC  /\  ( 0 ( abs 
o.  -  ) x
)  <  ( f `  z ) ) )
126125simprd 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( 0 ( abs 
o.  -  ) x
)  <  ( f `  z ) )
127107, 126eqbrtrrd 4302 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <  ( f `  z ) )
128 simplrr 753 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  A. u  e.  s 
( f `  u
)  <_  r )
129112breq1d 4290 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  z  ->  (
( f `  u
)  <_  r  <->  ( f `  z )  <_  r
) )
130129rspcv 3058 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  s  ->  ( A. u  e.  s 
( f `  u
)  <_  r  ->  ( f `  z )  <_  r ) )
131104, 128, 130sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  <_  r )
132100, 106, 101, 127, 131ltletrd 9519 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <  r )
133100, 101, 132ltled 9510 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <_  r )
134133rexlimdvaa 2832 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( E. z  e.  s  x  e.  z  ->  ( abs `  x )  <_  r
) )
13591, 134sylbid 215 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  ->  ( abs `  x )  <_  r
) )
136135ralrimiv 2788 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  A. x  e.  X  ( abs `  x )  <_  r
)
137136expr 610 . . . . . . . . . 10  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  r  e.  RR )  ->  ( A. u  e.  s  ( f `  u )  <_  r  ->  A. x  e.  X  ( abs `  x )  <_  r ) )
138137reximdva 2818 . . . . . . . . 9  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
( E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r ) )
13985, 138mpd 15 . . . . . . . 8  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r )
140139ex 434 . . . . . . 7  |-  ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  ->  ( (
f : s --> RR+  /\ 
A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
141140exlimdv 1689 . . . . . 6  |-  ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  ->  ( E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
142141expimpd 598 . . . . 5  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  ->  ( ( U. T  =  U. s  /\  E. f ( f : s --> RR+  /\ 
A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r ) )
143142rexlimdva 2831 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( E. s  e.  ( ~P T  i^i  Fin )
( U. T  = 
U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
14476, 143mpd 15 . . 3  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
14511, 144jca 529 . 2  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
) )
146 eqid 2433 . . . . . 6  |-  ( y  e.  RR ,  z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) )  =  ( y  e.  RR ,  z  e.  RR  |->  ( y  +  ( _i  x.  z
) ) )
147 eqid 2433 . . . . . 6  |-  ( ( y  e.  RR , 
z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) ) " ( (
-u r [,] r
)  X.  ( -u r [,] r ) ) )  =  ( ( y  e.  RR , 
z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) ) " ( (
-u r [,] r
)  X.  ( -u r [,] r ) ) )
1481, 5, 146, 147cnheiborlem 20368 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  (
r  e.  RR  /\  A. x  e.  X  ( abs `  x )  <_  r ) )  ->  T  e.  Comp )
149148rexlimdvaa 2832 . . . 4  |-  ( X  e.  ( Clsd `  J
)  ->  ( E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r  ->  T  e.  Comp )
)
150149imp 429 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
)  ->  T  e.  Comp )
151150adantl 463 . 2  |-  ( ( X  C_  CC  /\  ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
) )  ->  T  e.  Comp )
152145, 151impbida 821 1  |-  ( X 
C_  CC  ->  ( T  e.  Comp  <->  ( X  e.  ( Clsd `  J
)  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1362   E.wex 1589    e. wcel 1755   A.wral 2705   E.wrex 2706   _Vcvv 2962    i^i cin 3315    C_ wss 3316   ~Pcpw 3848   U.cuni 4079   class class class wbr 4280    X. cxp 4825   "cima 4830    o. ccom 4831   -->wf 5402   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   Fincfn 7298   CCcc 9268   RRcr 9269   0cc0 9270   1c1 9271   _ici 9272    + caddc 9273    x. cmul 9275   RR*cxr 9405    < clt 9406    <_ cle 9407    - cmin 9583   -ucneg 9584   RR+crp 10979   [,]cicc 11291   abscabs 12707   ↾t crest 14342   TopOpenctopn 14343   *Metcxmt 17645   ballcbl 17647  ℂfldccnfld 17662   Topctop 18340   Clsdccld 18462   Hauscha 18754   Compccmp 18831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-icc 11295  df-fz 11425  df-fzo 11533  df-seq 11791  df-exp 11850  df-hash 12088  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-cls 18467  df-cn 18673  df-cnp 18674  df-haus 18761  df-cmp 18832  df-tx 18977  df-hmeo 19170  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296
This theorem is referenced by:  cnllycmp  20370  cncmet  20675  ftalem3  22297
  Copyright terms: Public domain W3C validator