MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Visualization version   Unicode version

Theorem cnheibor 21983
Description: Heine-Borel theorem for complex numbers. A subset of  CC is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2  |-  J  =  ( TopOpen ` fld )
cnheibor.3  |-  T  =  ( Jt  X )
Assertion
Ref Expression
cnheibor  |-  ( X 
C_  CC  ->  ( T  e.  Comp  <->  ( X  e.  ( Clsd `  J
)  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
) )
Distinct variable groups:    x, r, T    J, r, x    X, r, x

Proof of Theorem cnheibor
Dummy variables  f 
s  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6  |-  J  =  ( TopOpen ` fld )
21cnfldhaus 21805 . . . . 5  |-  J  e. 
Haus
32a1i 11 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  J  e.  Haus )
4 simpl 459 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  C_  CC )
5 cnheibor.3 . . . . 5  |-  T  =  ( Jt  X )
6 simpr 463 . . . . 5  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  T  e.  Comp )
75, 6syl5eqelr 2534 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( Jt  X )  e.  Comp )
81cnfldtopon 21803 . . . . . 6  |-  J  e.  (TopOn `  CC )
98toponunii 19947 . . . . 5  |-  CC  =  U. J
109hauscmp 20422 . . . 4  |-  ( ( J  e.  Haus  /\  X  C_  CC  /\  ( Jt  X )  e.  Comp )  ->  X  e.  ( Clsd `  J ) )
113, 4, 7, 10syl3anc 1268 . . 3  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  e.  ( Clsd `  J
) )
121cnfldtop 21804 . . . . . . . . . . 11  |-  J  e. 
Top
139restuni 20178 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  C_  CC )  ->  X  =  U. ( Jt  X ) )
1412, 4, 13sylancr 669 . . . . . . . . . 10  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  =  U. ( Jt  X ) )
155unieqi 4207 . . . . . . . . . 10  |-  U. T  =  U. ( Jt  X )
1614, 15syl6eqr 2503 . . . . . . . . 9  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  =  U. T )
1716eleq2d 2514 . . . . . . . 8  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  (
x  e.  X  <->  x  e.  U. T ) )
1817biimpar 488 . . . . . . 7  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  U. T
)  ->  x  e.  X )
1912a1i 11 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  J  e.  Top )
20 cnex 9620 . . . . . . . . . . . 12  |-  CC  e.  _V
21 ssexg 4549 . . . . . . . . . . . 12  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
224, 20, 21sylancl 668 . . . . . . . . . . 11  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  e.  _V )
2322adantr 467 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  X  e.  _V )
24 cnxmet 21793 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2524a1i 11 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs  o. 
-  )  e.  ( *Met `  CC ) )
26 0cnd 9636 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  0  e.  CC )
274sselda 3432 . . . . . . . . . . . . . 14  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  CC )
2827abscld 13498 . . . . . . . . . . . . 13  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs `  x )  e.  RR )
29 peano2re 9806 . . . . . . . . . . . . 13  |-  ( ( abs `  x )  e.  RR  ->  (
( abs `  x
)  +  1 )  e.  RR )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR )
3130rexrd 9690 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR* )
321cnfldtopn 21802 . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
3332blopn 21515 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( abs `  x
)  +  1 )  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )
3425, 26, 31, 33syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )
35 elrestr 15327 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  e.  _V  /\  (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )  ->  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  ( Jt  X ) )
3619, 23, 34, 35syl3anc 1268 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  ( Jt  X ) )
3736, 5syl6eleqr 2540 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  T )
38 0cn 9635 . . . . . . . . . . . . . 14  |-  0  e.  CC
39 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4039cnmetdval 21791 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 ( abs 
o.  -  ) x
)  =  ( abs `  ( 0  -  x
) ) )
4138, 40mpan 676 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
0 ( abs  o.  -  ) x )  =  ( abs `  (
0  -  x ) ) )
42 df-neg 9863 . . . . . . . . . . . . . . 15  |-  -u x  =  ( 0  -  x )
4342fveq2i 5868 . . . . . . . . . . . . . 14  |-  ( abs `  -u x )  =  ( abs `  (
0  -  x ) )
44 absneg 13340 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( abs `  -u x )  =  ( abs `  x
) )
4543, 44syl5eqr 2499 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( abs `  ( 0  -  x ) )  =  ( abs `  x
) )
4641, 45eqtrd 2485 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
0 ( abs  o.  -  ) x )  =  ( abs `  x
) )
4727, 46syl 17 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( abs  o.  -  ) x )  =  ( abs `  x
) )
4828ltp1d 10537 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs `  x )  <  (
( abs `  x
)  +  1 ) )
4947, 48eqbrtrd 4423 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( abs  o.  -  ) x )  < 
( ( abs `  x
)  +  1 ) )
50 elbl 21403 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( abs `  x
)  +  1 )  e.  RR* )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( ( abs `  x
)  +  1 ) ) ) )
5125, 26, 31, 50syl3anc 1268 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  <-> 
( x  e.  CC  /\  ( 0 ( abs 
o.  -  ) x
)  <  ( ( abs `  x )  +  1 ) ) ) )
5227, 49, 51mpbir2and 933 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) ) )
53 simpr 463 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  X )
5452, 53elind 3618 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )
5527absge0d 13506 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  0  <_  ( abs `  x ) )
5628, 55ge0p1rpd 11368 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR+ )
57 eqid 2451 . . . . . . . . 9  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )
58 oveq2 6298 . . . . . . . . . . . 12  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( 0 ( ball `  ( abs  o.  -  ) ) r )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) ) )
5958ineq1d 3633 . . . . . . . . . . 11  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
)  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )
6059eqeq2d 2461 . . . . . . . . . 10  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X )  <-> 
( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) ) )
6160rspcev 3150 . . . . . . . . 9  |-  ( ( ( ( abs `  x
)  +  1 )  e.  RR+  /\  (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )  ->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) )
6256, 57, 61sylancl 668 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) )
63 eleq2 2518 . . . . . . . . . 10  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( x  e.  u  <->  x  e.  (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X ) ) )
64 eqeq1 2455 . . . . . . . . . . 11  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X )  <-> 
( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6564rexbidv 2901 . . . . . . . . . 10  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X )  <->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6663, 65anbi12d 717 . . . . . . . . 9  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X ) )  <->  ( x  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  /\  E. r  e.  RR+  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) ) )
6766rspcev 3150 . . . . . . . 8  |-  ( ( ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  T  /\  (
x  e.  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  /\  E. r  e.  RR+  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6837, 54, 62, 67syl12anc 1266 . . . . . . 7  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
6918, 68syldan 473 . . . . . 6  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  U. T
)  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
7069ralrimiva 2802 . . . . 5  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  A. x  e.  U. T E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
71 eqid 2451 . . . . . 6  |-  U. T  =  U. T
72 oveq2 6298 . . . . . . . 8  |-  ( r  =  ( f `  u )  ->  (
0 ( ball `  ( abs  o.  -  ) ) r )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) ) )
7372ineq1d 3633 . . . . . . 7  |-  ( r  =  ( f `  u )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) )
7473eqeq2d 2461 . . . . . 6  |-  ( r  =  ( f `  u )  ->  (
u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
)  <->  u  =  (
( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 u ) )  i^i  X ) ) )
7571, 74cmpcovf 20406 . . . . 5  |-  ( ( T  e.  Comp  /\  A. x  e.  U. T E. u  e.  T  (
x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )  ->  E. s  e.  ( ~P T  i^i  Fin )
( U. T  = 
U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) ) )
766, 70, 75syl2anc 667 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  E. s  e.  ( ~P T  i^i  Fin ) ( U. T  =  U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) ) )
7716ad4antr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  X  =  U. T )
78 simpllr 769 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  U. T  = 
U. s )
7977, 78eqtrd 2485 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  X  =  U. s )
8079eleq2d 2514 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  <->  x  e.  U. s
) )
81 eluni2 4202 . . . . . . . . . . . 12  |-  ( x  e.  U. s  <->  E. z  e.  s  x  e.  z )
8280, 81syl6bb 265 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  <->  E. z  e.  s  x  e.  z ) )
83 elssuni 4227 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  s  ->  z  C_ 
U. s )
8483ad2antrl 734 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  U. s
)
8579adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  X  =  U. s
)
8684, 85sseqtr4d 3469 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  X )
87 simp-6l 780 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  X  C_  CC )
8886, 87sstrd 3442 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  CC )
89 simprr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  z )
9088, 89sseldd 3433 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  CC )
9190abscld 13498 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  e.  RR )
92 simplrl 770 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
r  e.  RR )
93 simprl 764 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
f : s --> RR+ )
9493ad2antrr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
f : s --> RR+ )
95 simprl 764 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  e.  s )
9694, 95ffvelrnd 6023 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR+ )
9796rpred 11341 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR )
9890, 46syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( 0 ( abs 
o.  -  ) x
)  =  ( abs `  x ) )
99 inss1 3652 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
)  C_  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )
100 simprr 766 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )
101100ad2antrr 732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )
102 id 22 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  u  =  z )
103 fveq2 5865 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
104103oveq2d 6306 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  z  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) ) )
105104ineq1d 3633 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 u ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  z ) )  i^i  X ) )
106102, 105eqeq12d 2466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
)  <->  z  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 z ) )  i^i  X ) ) )
107106rspcv 3146 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  s  ->  ( A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
)  ->  z  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  z ) )  i^i  X ) ) )
10895, 101, 107sylc 62 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
) )
10989, 108eleqtrd 2531 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
) )
11099, 109sseldi 3430 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) ) )
11124a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
112 0cnd 9636 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
0  e.  CC )
11396rpxrd 11342 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR* )
114 elbl 21403 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
f `  z )  e.  RR* )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( f `  z
) ) ) )
115111, 112, 113, 114syl3anc 1268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( f `  z
) ) ) )
116110, 115mpbid 214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( x  e.  CC  /\  ( 0 ( abs 
o.  -  ) x
)  <  ( f `  z ) ) )
117116simprd 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( 0 ( abs 
o.  -  ) x
)  <  ( f `  z ) )
11898, 117eqbrtrrd 4425 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <  ( f `  z ) )
119 simplrr 771 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  A. u  e.  s 
( f `  u
)  <_  r )
120103breq1d 4412 . . . . . . . . . . . . . . . 16  |-  ( u  =  z  ->  (
( f `  u
)  <_  r  <->  ( f `  z )  <_  r
) )
121120rspcv 3146 . . . . . . . . . . . . . . 15  |-  ( z  e.  s  ->  ( A. u  e.  s 
( f `  u
)  <_  r  ->  ( f `  z )  <_  r ) )
12295, 119, 121sylc 62 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  <_  r )
12391, 97, 92, 118, 122ltletrd 9795 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <  r )
12491, 92, 123ltled 9783 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <_  r )
125124rexlimdvaa 2880 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( E. z  e.  s  x  e.  z  ->  ( abs `  x )  <_  r
) )
12682, 125sylbid 219 . . . . . . . . . 10  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  ->  ( abs `  x )  <_  r
) )
127126ralrimiv 2800 . . . . . . . . 9  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  A. x  e.  X  ( abs `  x )  <_  r
)
128 inss2 3653 . . . . . . . . . . 11  |-  ( ~P T  i^i  Fin )  C_ 
Fin
129 simpllr 769 . . . . . . . . . . 11  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
s  e.  ( ~P T  i^i  Fin )
)
130128, 129sseldi 3430 . . . . . . . . . 10  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
s  e.  Fin )
131 ffvelrn 6020 . . . . . . . . . . . . 13  |-  ( ( f : s --> RR+  /\  u  e.  s )  ->  ( f `  u )  e.  RR+ )
132131rpred 11341 . . . . . . . . . . . 12  |-  ( ( f : s --> RR+  /\  u  e.  s )  ->  ( f `  u )  e.  RR )
133132ralrimiva 2802 . . . . . . . . . . 11  |-  ( f : s --> RR+  ->  A. u  e.  s  ( f `  u )  e.  RR )
134133ad2antrl 734 . . . . . . . . . 10  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  A. u  e.  s 
( f `  u
)  e.  RR )
135 fimaxre3 10553 . . . . . . . . . 10  |-  ( ( s  e.  Fin  /\  A. u  e.  s  ( f `  u )  e.  RR )  ->  E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r )
136130, 134, 135syl2anc 667 . . . . . . . . 9  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r )
137127, 136reximddv 2863 . . . . . . . 8  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r )
138137ex 436 . . . . . . 7  |-  ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  ->  ( (
f : s --> RR+  /\ 
A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
139138exlimdv 1779 . . . . . 6  |-  ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  ->  ( E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
140139expimpd 608 . . . . 5  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  ->  ( ( U. T  =  U. s  /\  E. f ( f : s --> RR+  /\ 
A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r ) )
141140rexlimdva 2879 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( E. s  e.  ( ~P T  i^i  Fin )
( U. T  = 
U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
14276, 141mpd 15 . . 3  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
14311, 142jca 535 . 2  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
) )
144 eqid 2451 . . . . . 6  |-  ( y  e.  RR ,  z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) )  =  ( y  e.  RR ,  z  e.  RR  |->  ( y  +  ( _i  x.  z
) ) )
145 eqid 2451 . . . . . 6  |-  ( ( y  e.  RR , 
z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) ) " ( (
-u r [,] r
)  X.  ( -u r [,] r ) ) )  =  ( ( y  e.  RR , 
z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) ) " ( (
-u r [,] r
)  X.  ( -u r [,] r ) ) )
1461, 5, 144, 145cnheiborlem 21982 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  (
r  e.  RR  /\  A. x  e.  X  ( abs `  x )  <_  r ) )  ->  T  e.  Comp )
147146rexlimdvaa 2880 . . . 4  |-  ( X  e.  ( Clsd `  J
)  ->  ( E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r  ->  T  e.  Comp )
)
148147imp 431 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
)  ->  T  e.  Comp )
149148adantl 468 . 2  |-  ( ( X  C_  CC  /\  ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
) )  ->  T  e.  Comp )
150143, 149impbida 843 1  |-  ( X 
C_  CC  ->  ( T  e.  Comp  <->  ( X  e.  ( Clsd `  J
)  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444   E.wex 1663    e. wcel 1887   A.wral 2737   E.wrex 2738   _Vcvv 3045    i^i cin 3403    C_ wss 3404   ~Pcpw 3951   U.cuni 4198   class class class wbr 4402    X. cxp 4832   "cima 4837    o. ccom 4838   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292   Fincfn 7569   CCcc 9537   RRcr 9538   0cc0 9539   1c1 9540   _ici 9541    + caddc 9542    x. cmul 9544   RR*cxr 9674    < clt 9675    <_ cle 9676    - cmin 9860   -ucneg 9861   RR+crp 11302   [,]cicc 11638   abscabs 13297   ↾t crest 15319   TopOpenctopn 15320   *Metcxmt 18955   ballcbl 18957  ℂfldccnfld 18970   Topctop 19917   Clsdccld 20031   Hauscha 20324   Compccmp 20401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-icc 11642  df-fz 11785  df-fzo 11916  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-cls 20036  df-cn 20243  df-cnp 20244  df-haus 20331  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-xms 21335  df-ms 21336  df-tms 21337  df-cncf 21910
This theorem is referenced by:  cnllycmp  21984  cncmet  22290  ftalem3  23999
  Copyright terms: Public domain W3C validator