MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnheibor Structured version   Unicode version

Theorem cnheibor 21979
Description: Heine-Borel theorem for complex numbers. A subset of  CC is compact iff it is closed and bounded. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
cnheibor.2  |-  J  =  ( TopOpen ` fld )
cnheibor.3  |-  T  =  ( Jt  X )
Assertion
Ref Expression
cnheibor  |-  ( X 
C_  CC  ->  ( T  e.  Comp  <->  ( X  e.  ( Clsd `  J
)  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
) )
Distinct variable groups:    x, r, T    J, r, x    X, r, x

Proof of Theorem cnheibor
Dummy variables  f 
s  u  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnheibor.2 . . . . . 6  |-  J  =  ( TopOpen ` fld )
21cnfldhaus 21801 . . . . 5  |-  J  e. 
Haus
32a1i 11 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  J  e.  Haus )
4 simpl 459 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  C_  CC )
5 cnheibor.3 . . . . 5  |-  T  =  ( Jt  X )
6 simpr 463 . . . . 5  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  T  e.  Comp )
75, 6syl5eqelr 2516 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( Jt  X )  e.  Comp )
81cnfldtopon 21799 . . . . . 6  |-  J  e.  (TopOn `  CC )
98toponunii 19943 . . . . 5  |-  CC  =  U. J
109hauscmp 20418 . . . 4  |-  ( ( J  e.  Haus  /\  X  C_  CC  /\  ( Jt  X )  e.  Comp )  ->  X  e.  ( Clsd `  J ) )
113, 4, 7, 10syl3anc 1265 . . 3  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  e.  ( Clsd `  J
) )
121cnfldtop 21800 . . . . . . . . . . 11  |-  J  e. 
Top
139restuni 20174 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  X  C_  CC )  ->  X  =  U. ( Jt  X ) )
1412, 4, 13sylancr 668 . . . . . . . . . 10  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  =  U. ( Jt  X ) )
155unieqi 4227 . . . . . . . . . 10  |-  U. T  =  U. ( Jt  X )
1614, 15syl6eqr 2482 . . . . . . . . 9  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  =  U. T )
1716eleq2d 2493 . . . . . . . 8  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  (
x  e.  X  <->  x  e.  U. T ) )
1817biimpar 488 . . . . . . 7  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  U. T
)  ->  x  e.  X )
1912a1i 11 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  J  e.  Top )
20 cnex 9626 . . . . . . . . . . . 12  |-  CC  e.  _V
21 ssexg 4569 . . . . . . . . . . . 12  |-  ( ( X  C_  CC  /\  CC  e.  _V )  ->  X  e.  _V )
224, 20, 21sylancl 667 . . . . . . . . . . 11  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  X  e.  _V )
2322adantr 467 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  X  e.  _V )
24 cnxmet 21789 . . . . . . . . . . . 12  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
2524a1i 11 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs  o. 
-  )  e.  ( *Met `  CC ) )
26 0cnd 9642 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  0  e.  CC )
274sselda 3466 . . . . . . . . . . . . . 14  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  CC )
2827abscld 13495 . . . . . . . . . . . . 13  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs `  x )  e.  RR )
29 peano2re 9812 . . . . . . . . . . . . 13  |-  ( ( abs `  x )  e.  RR  ->  (
( abs `  x
)  +  1 )  e.  RR )
3028, 29syl 17 . . . . . . . . . . . 12  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR )
3130rexrd 9696 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR* )
321cnfldtopn 21798 . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
3332blopn 21511 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( abs `  x
)  +  1 )  e.  RR* )  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )
3425, 26, 31, 33syl3anc 1265 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )
35 elrestr 15324 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  e.  _V  /\  (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  e.  J )  ->  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  ( Jt  X ) )
3619, 23, 34, 35syl3anc 1265 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  ( Jt  X ) )
3736, 5syl6eleqr 2522 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  T )
38 0cn 9641 . . . . . . . . . . . . . 14  |-  0  e.  CC
39 eqid 2423 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
4039cnmetdval 21787 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  CC  /\  x  e.  CC )  ->  ( 0 ( abs 
o.  -  ) x
)  =  ( abs `  ( 0  -  x
) ) )
4138, 40mpan 675 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  (
0 ( abs  o.  -  ) x )  =  ( abs `  (
0  -  x ) ) )
42 df-neg 9869 . . . . . . . . . . . . . . 15  |-  -u x  =  ( 0  -  x )
4342fveq2i 5883 . . . . . . . . . . . . . 14  |-  ( abs `  -u x )  =  ( abs `  (
0  -  x ) )
44 absneg 13338 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( abs `  -u x )  =  ( abs `  x
) )
4543, 44syl5eqr 2478 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( abs `  ( 0  -  x ) )  =  ( abs `  x
) )
4641, 45eqtrd 2464 . . . . . . . . . . . 12  |-  ( x  e.  CC  ->  (
0 ( abs  o.  -  ) x )  =  ( abs `  x
) )
4727, 46syl 17 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( abs  o.  -  ) x )  =  ( abs `  x
) )
4828ltp1d 10543 . . . . . . . . . . 11  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( abs `  x )  <  (
( abs `  x
)  +  1 ) )
4947, 48eqbrtrd 4443 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( 0 ( abs  o.  -  ) x )  < 
( ( abs `  x
)  +  1 ) )
50 elbl 21399 . . . . . . . . . . 11  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
( abs `  x
)  +  1 )  e.  RR* )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( ( abs `  x
)  +  1 ) ) ) )
5125, 26, 31, 50syl3anc 1265 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  <-> 
( x  e.  CC  /\  ( 0 ( abs 
o.  -  ) x
)  <  ( ( abs `  x )  +  1 ) ) ) )
5227, 49, 51mpbir2and 931 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) ) )
53 simpr 463 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  X )
5452, 53elind 3652 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  x  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )
5527absge0d 13503 . . . . . . . . . 10  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  0  <_  ( abs `  x ) )
5628, 55ge0p1rpd 11374 . . . . . . . . 9  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  ( ( abs `  x )  +  1 )  e.  RR+ )
57 eqid 2423 . . . . . . . . 9  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )
58 oveq2 6312 . . . . . . . . . . . 12  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( 0 ( ball `  ( abs  o.  -  ) ) r )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) ) )
5958ineq1d 3665 . . . . . . . . . . 11  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( (
0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
)  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )
6059eqeq2d 2437 . . . . . . . . . 10  |-  ( r  =  ( ( abs `  x )  +  1 )  ->  ( (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X )  <-> 
( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) ) )
6160rspcev 3183 . . . . . . . . 9  |-  ( ( ( ( abs `  x
)  +  1 )  e.  RR+  /\  (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X ) )  ->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) )
6256, 57, 61sylancl 667 . . . . . . . 8  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) )
63 eleq2 2496 . . . . . . . . . 10  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( x  e.  u  <->  x  e.  (
( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x )  +  1 ) )  i^i  X ) ) )
64 eqeq1 2427 . . . . . . . . . . 11  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X )  <-> 
( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6564rexbidv 2940 . . . . . . . . . 10  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X )  <->  E. r  e.  RR+  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6663, 65anbi12d 716 . . . . . . . . 9  |-  ( u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  ->  ( ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) r )  i^i  X ) )  <->  ( x  e.  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  /\  E. r  e.  RR+  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) ) )
6766rspcev 3183 . . . . . . . 8  |-  ( ( ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  e.  T  /\  (
x  e.  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  /\  E. r  e.  RR+  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( ( abs `  x
)  +  1 ) )  i^i  X )  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )
6837, 54, 62, 67syl12anc 1263 . . . . . . 7  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  X
)  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
6918, 68syldan 473 . . . . . 6  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  x  e.  U. T
)  ->  E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
7069ralrimiva 2840 . . . . 5  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  A. x  e.  U. T E. u  e.  T  ( x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X ) ) )
71 eqid 2423 . . . . . 6  |-  U. T  =  U. T
72 oveq2 6312 . . . . . . . 8  |-  ( r  =  ( f `  u )  ->  (
0 ( ball `  ( abs  o.  -  ) ) r )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) ) )
7372ineq1d 3665 . . . . . . 7  |-  ( r  =  ( f `  u )  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) )
7473eqeq2d 2437 . . . . . 6  |-  ( r  =  ( f `  u )  ->  (
u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
)  <->  u  =  (
( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 u ) )  i^i  X ) ) )
7571, 74cmpcovf 20402 . . . . 5  |-  ( ( T  e.  Comp  /\  A. x  e.  U. T E. u  e.  T  (
x  e.  u  /\  E. r  e.  RR+  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) r )  i^i  X
) ) )  ->  E. s  e.  ( ~P T  i^i  Fin )
( U. T  = 
U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) ) )
766, 70, 75syl2anc 666 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  E. s  e.  ( ~P T  i^i  Fin ) ( U. T  =  U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) ) )
7716ad4antr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  X  =  U. T )
78 simpllr 768 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  U. T  = 
U. s )
7977, 78eqtrd 2464 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  X  =  U. s )
8079eleq2d 2493 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  <->  x  e.  U. s
) )
81 eluni2 4222 . . . . . . . . . . . 12  |-  ( x  e.  U. s  <->  E. z  e.  s  x  e.  z )
8280, 81syl6bb 265 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  <->  E. z  e.  s  x  e.  z ) )
83 elssuni 4247 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  s  ->  z  C_ 
U. s )
8483ad2antrl 733 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  U. s
)
8579adantr 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  X  =  U. s
)
8684, 85sseqtr4d 3503 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  X )
87 simp-6l 779 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  X  C_  CC )
8886, 87sstrd 3476 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  C_  CC )
89 simprr 765 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  z )
9088, 89sseldd 3467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  CC )
9190abscld 13495 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  e.  RR )
92 simplrl 769 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
r  e.  RR )
93 simprl 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
f : s --> RR+ )
9493ad2antrr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
f : s --> RR+ )
95 simprl 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  e.  s )
9694, 95ffvelrnd 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR+ )
9796rpred 11347 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR )
9890, 46syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( 0 ( abs 
o.  -  ) x
)  =  ( abs `  x ) )
99 inss1 3684 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
)  C_  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )
100 simprr 765 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )
101100ad2antrr 731 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )
102 id 23 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  u  =  z )
103 fveq2 5880 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
104103oveq2d 6320 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( u  =  z  ->  (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  =  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) ) )
105104ineq1d 3665 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( u  =  z  ->  (
( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 u ) )  i^i  X )  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  z ) )  i^i  X ) )
106102, 105eqeq12d 2445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( u  =  z  ->  (
u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
)  <->  z  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `
 z ) )  i^i  X ) ) )
107106rspcv 3179 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  s  ->  ( A. u  e.  s  u  =  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
)  ->  z  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  z ) )  i^i  X ) ) )
10895, 101, 107sylc 63 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
z  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
) )
10989, 108eleqtrd 2513 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  ( (
0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  i^i  X
) )
11099, 109sseldi 3464 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) ) )
11124a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
112 0cnd 9642 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
0  e.  CC )
11396rpxrd 11348 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  e.  RR* )
114 elbl 21399 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  0  e.  CC  /\  (
f `  z )  e.  RR* )  ->  (
x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( f `  z
) ) ) )
115111, 112, 113, 114syl3anc 1265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( x  e.  ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  z
) )  <->  ( x  e.  CC  /\  ( 0 ( abs  o.  -  ) x )  < 
( f `  z
) ) ) )
116110, 115mpbid 214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( x  e.  CC  /\  ( 0 ( abs 
o.  -  ) x
)  <  ( f `  z ) ) )
117116simprd 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( 0 ( abs 
o.  -  ) x
)  <  ( f `  z ) )
11898, 117eqbrtrrd 4445 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <  ( f `  z ) )
119 simplrr 770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  ->  A. u  e.  s 
( f `  u
)  <_  r )
120103breq1d 4432 . . . . . . . . . . . . . . . 16  |-  ( u  =  z  ->  (
( f `  u
)  <_  r  <->  ( f `  z )  <_  r
) )
121120rspcv 3179 . . . . . . . . . . . . . . 15  |-  ( z  e.  s  ->  ( A. u  e.  s 
( f `  u
)  <_  r  ->  ( f `  z )  <_  r ) )
12295, 119, 121sylc 63 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( f `  z
)  <_  r )
12391, 97, 92, 118, 122ltletrd 9801 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <  r )
12491, 92, 123ltled 9789 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  /\  U. T  = 
U. s )  /\  ( f : s -->
RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  /\  (
r  e.  RR  /\  A. u  e.  s  ( f `  u )  <_  r ) )  /\  ( z  e.  s  /\  x  e.  z ) )  -> 
( abs `  x
)  <_  r )
125124rexlimdvaa 2919 . . . . . . . . . . 11  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( E. z  e.  s  x  e.  z  ->  ( abs `  x )  <_  r
) )
12682, 125sylbid 219 . . . . . . . . . 10  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  ( x  e.  X  ->  ( abs `  x )  <_  r
) )
127126ralrimiv 2838 . . . . . . . . 9  |-  ( ( ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  /\  ( r  e.  RR  /\ 
A. u  e.  s  ( f `  u
)  <_  r )
)  ->  A. x  e.  X  ( abs `  x )  <_  r
)
128 inss2 3685 . . . . . . . . . . 11  |-  ( ~P T  i^i  Fin )  C_ 
Fin
129 simpllr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
s  e.  ( ~P T  i^i  Fin )
)
130128, 129sseldi 3464 . . . . . . . . . 10  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  -> 
s  e.  Fin )
131 ffvelrn 6034 . . . . . . . . . . . . 13  |-  ( ( f : s --> RR+  /\  u  e.  s )  ->  ( f `  u )  e.  RR+ )
132131rpred 11347 . . . . . . . . . . . 12  |-  ( ( f : s --> RR+  /\  u  e.  s )  ->  ( f `  u )  e.  RR )
133132ralrimiva 2840 . . . . . . . . . . 11  |-  ( f : s --> RR+  ->  A. u  e.  s  ( f `  u )  e.  RR )
134133ad2antrl 733 . . . . . . . . . 10  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  A. u  e.  s 
( f `  u
)  e.  RR )
135 fimaxre3 10559 . . . . . . . . . 10  |-  ( ( s  e.  Fin  /\  A. u  e.  s  ( f `  u )  e.  RR )  ->  E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r )
136130, 134, 135syl2anc 666 . . . . . . . . 9  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. u  e.  s  ( f `  u )  <_  r )
137127, 136reximddv 2902 . . . . . . . 8  |-  ( ( ( ( ( X 
C_  CC  /\  T  e. 
Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  /\  ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r )
138137ex 436 . . . . . . 7  |-  ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  ->  ( (
f : s --> RR+  /\ 
A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
139138exlimdv 1769 . . . . . 6  |-  ( ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin ) )  /\  U. T  =  U. s
)  ->  ( E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
140139expimpd 607 . . . . 5  |-  ( ( ( X  C_  CC  /\  T  e.  Comp )  /\  s  e.  ( ~P T  i^i  Fin )
)  ->  ( ( U. T  =  U. s  /\  E. f ( f : s --> RR+  /\ 
A. u  e.  s  u  =  ( ( 0 ( ball `  ( abs  o.  -  ) ) ( f `  u
) )  i^i  X
) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r ) )
141140rexlimdva 2918 . . . 4  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( E. s  e.  ( ~P T  i^i  Fin )
( U. T  = 
U. s  /\  E. f ( f : s --> RR+  /\  A. u  e.  s  u  =  ( ( 0 (
ball `  ( abs  o. 
-  ) ) ( f `  u ) )  i^i  X ) ) )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
)
14276, 141mpd 15 . . 3  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
14311, 142jca 535 . 2  |-  ( ( X  C_  CC  /\  T  e.  Comp )  ->  ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
) )
144 eqid 2423 . . . . . 6  |-  ( y  e.  RR ,  z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) )  =  ( y  e.  RR ,  z  e.  RR  |->  ( y  +  ( _i  x.  z
) ) )
145 eqid 2423 . . . . . 6  |-  ( ( y  e.  RR , 
z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) ) " ( (
-u r [,] r
)  X.  ( -u r [,] r ) ) )  =  ( ( y  e.  RR , 
z  e.  RR  |->  ( y  +  ( _i  x.  z ) ) ) " ( (
-u r [,] r
)  X.  ( -u r [,] r ) ) )
1461, 5, 144, 145cnheiborlem 21978 . . . . 5  |-  ( ( X  e.  ( Clsd `  J )  /\  (
r  e.  RR  /\  A. x  e.  X  ( abs `  x )  <_  r ) )  ->  T  e.  Comp )
147146rexlimdvaa 2919 . . . 4  |-  ( X  e.  ( Clsd `  J
)  ->  ( E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r  ->  T  e.  Comp )
)
148147imp 431 . . 3  |-  ( ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
)  ->  T  e.  Comp )
149148adantl 468 . 2  |-  ( ( X  C_  CC  /\  ( X  e.  ( Clsd `  J )  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x )  <_  r
) )  ->  T  e.  Comp )
150143, 149impbida 841 1  |-  ( X 
C_  CC  ->  ( T  e.  Comp  <->  ( X  e.  ( Clsd `  J
)  /\  E. r  e.  RR  A. x  e.  X  ( abs `  x
)  <_  r )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438   E.wex 1660    e. wcel 1869   A.wral 2776   E.wrex 2777   _Vcvv 3082    i^i cin 3437    C_ wss 3438   ~Pcpw 3981   U.cuni 4218   class class class wbr 4422    X. cxp 4850   "cima 4855    o. ccom 4856   -->wf 5596   ` cfv 5600  (class class class)co 6304    |-> cmpt2 6306   Fincfn 7579   CCcc 9543   RRcr 9544   0cc0 9545   1c1 9546   _ici 9547    + caddc 9548    x. cmul 9550   RR*cxr 9680    < clt 9681    <_ cle 9682    - cmin 9866   -ucneg 9867   RR+crp 11308   [,]cicc 11644   abscabs 13295   ↾t crest 15316   TopOpenctopn 15317   *Metcxmt 18952   ballcbl 18954  ℂfldccnfld 18967   Topctop 19913   Clsdccld 20027   Hauscha 20320   Compccmp 20397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4535  ax-sep 4545  ax-nul 4554  ax-pow 4601  ax-pr 4659  ax-un 6596  ax-inf2 8154  ax-cnex 9601  ax-resscn 9602  ax-1cn 9603  ax-icn 9604  ax-addcl 9605  ax-addrcl 9606  ax-mulcl 9607  ax-mulrcl 9608  ax-mulcom 9609  ax-addass 9610  ax-mulass 9611  ax-distr 9612  ax-i2m1 9613  ax-1ne0 9614  ax-1rid 9615  ax-rnegex 9616  ax-rrecex 9617  ax-cnre 9618  ax-pre-lttri 9619  ax-pre-lttrn 9620  ax-pre-ltadd 9621  ax-pre-mulgt0 9622  ax-pre-sup 9623  ax-addf 9624  ax-mulf 9625
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3302  df-csb 3398  df-dif 3441  df-un 3443  df-in 3445  df-ss 3452  df-pss 3454  df-nul 3764  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4219  df-int 4255  df-iun 4300  df-iin 4301  df-br 4423  df-opab 4482  df-mpt 4483  df-tr 4518  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6266  df-ov 6307  df-oprab 6308  df-mpt2 6309  df-of 6544  df-om 6706  df-1st 6806  df-2nd 6807  df-supp 6925  df-wrecs 7038  df-recs 7100  df-rdg 7138  df-1o 7192  df-2o 7193  df-oadd 7196  df-er 7373  df-map 7484  df-ixp 7533  df-en 7580  df-dom 7581  df-sdom 7582  df-fin 7583  df-fsupp 7892  df-fi 7933  df-sup 7964  df-inf 7965  df-oi 8033  df-card 8380  df-cda 8604  df-pnf 9683  df-mnf 9684  df-xr 9685  df-ltxr 9686  df-le 9687  df-sub 9868  df-neg 9869  df-div 10276  df-nn 10616  df-2 10674  df-3 10675  df-4 10676  df-5 10677  df-6 10678  df-7 10679  df-8 10680  df-9 10681  df-10 10682  df-n0 10876  df-z 10944  df-dec 11058  df-uz 11166  df-q 11271  df-rp 11309  df-xneg 11415  df-xadd 11416  df-xmul 11417  df-ioo 11645  df-icc 11648  df-fz 11791  df-fzo 11922  df-seq 12219  df-exp 12278  df-hash 12521  df-cj 13160  df-re 13161  df-im 13162  df-sqrt 13296  df-abs 13297  df-struct 15120  df-ndx 15121  df-slot 15122  df-base 15123  df-sets 15124  df-ress 15125  df-plusg 15200  df-mulr 15201  df-starv 15202  df-sca 15203  df-vsca 15204  df-ip 15205  df-tset 15206  df-ple 15207  df-ds 15209  df-unif 15210  df-hom 15211  df-cco 15212  df-rest 15318  df-topn 15319  df-0g 15337  df-gsum 15338  df-topgen 15339  df-pt 15340  df-prds 15343  df-xrs 15397  df-qtop 15403  df-imas 15404  df-xps 15407  df-mre 15489  df-mrc 15490  df-acs 15492  df-mgm 16485  df-sgrp 16524  df-mnd 16534  df-submnd 16580  df-mulg 16673  df-cntz 16968  df-cmn 17429  df-psmet 18959  df-xmet 18960  df-met 18961  df-bl 18962  df-mopn 18963  df-cnfld 18968  df-top 19917  df-bases 19918  df-topon 19919  df-topsp 19920  df-cld 20030  df-cls 20032  df-cn 20239  df-cnp 20240  df-haus 20327  df-cmp 20398  df-tx 20573  df-hmeo 20766  df-xms 21331  df-ms 21332  df-tms 21333  df-cncf 21906
This theorem is referenced by:  cnllycmp  21980  cncmet  22286  ftalem3  23995
  Copyright terms: Public domain W3C validator