MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmulg Structured version   Unicode version

Theorem cnfldmulg 18563
Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015.)
Assertion
Ref Expression
cnfldmulg  |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) )

Proof of Theorem cnfldmulg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6203 . . . 4  |-  ( x  =  0  ->  (
x (.g ` fld ) B )  =  ( 0 (.g ` fld ) B ) )
2 oveq1 6203 . . . 4  |-  ( x  =  0  ->  (
x  x.  B )  =  ( 0  x.  B ) )
31, 2eqeq12d 2404 . . 3  |-  ( x  =  0  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( 0 (.g ` fld ) B )  =  ( 0  x.  B ) ) )
4 oveq1 6203 . . . 4  |-  ( x  =  y  ->  (
x (.g ` fld ) B )  =  ( y (.g ` fld ) B ) )
5 oveq1 6203 . . . 4  |-  ( x  =  y  ->  (
x  x.  B )  =  ( y  x.  B ) )
64, 5eqeq12d 2404 . . 3  |-  ( x  =  y  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( y (.g ` fld ) B )  =  ( y  x.  B ) ) )
7 oveq1 6203 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x (.g ` fld ) B )  =  ( ( y  +  1 ) (.g ` fld ) B ) )
8 oveq1 6203 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
x  x.  B )  =  ( ( y  +  1 )  x.  B ) )
97, 8eqeq12d 2404 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B ) ) )
10 oveq1 6203 . . . 4  |-  ( x  =  -u y  ->  (
x (.g ` fld ) B )  =  ( -u y (.g ` fld ) B ) )
11 oveq1 6203 . . . 4  |-  ( x  =  -u y  ->  (
x  x.  B )  =  ( -u y  x.  B ) )
1210, 11eqeq12d 2404 . . 3  |-  ( x  =  -u y  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) )
13 oveq1 6203 . . . 4  |-  ( x  =  A  ->  (
x (.g ` fld ) B )  =  ( A (.g ` fld ) B ) )
14 oveq1 6203 . . . 4  |-  ( x  =  A  ->  (
x  x.  B )  =  ( A  x.  B ) )
1513, 14eqeq12d 2404 . . 3  |-  ( x  =  A  ->  (
( x (.g ` fld ) B )  =  ( x  x.  B
)  <->  ( A (.g ` fld ) B )  =  ( A  x.  B ) ) )
16 cnfldbas 18537 . . . . 5  |-  CC  =  ( Base ` fld )
17 cnfld0 18555 . . . . 5  |-  0  =  ( 0g ` fld )
18 eqid 2382 . . . . 5  |-  (.g ` fld )  =  (.g ` fld )
1916, 17, 18mulg0 16264 . . . 4  |-  ( B  e.  CC  ->  (
0 (.g ` fld ) B )  =  0 )
20 mul02 9669 . . . 4  |-  ( B  e.  CC  ->  (
0  x.  B )  =  0 )
2119, 20eqtr4d 2426 . . 3  |-  ( B  e.  CC  ->  (
0 (.g ` fld ) B )  =  ( 0  x.  B
) )
22 oveq1 6203 . . . . 5  |-  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( (
y (.g ` fld ) B )  +  B )  =  ( ( y  x.  B
)  +  B ) )
23 cnring 18553 . . . . . . . 8  |-fld  e.  Ring
24 ringmnd 17320 . . . . . . . 8  |-  (fld  e.  Ring  ->fld  e.  Mnd )
2523, 24ax-mp 5 . . . . . . 7  |-fld  e.  Mnd
26 cnfldadd 18538 . . . . . . . 8  |-  +  =  ( +g  ` fld )
2716, 18, 26mulgnn0p1 16270 . . . . . . 7  |-  ( (fld  e. 
Mnd  /\  y  e.  NN0 
/\  B  e.  CC )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y (.g ` fld ) B )  +  B ) )
2825, 27mp3an1 1309 . . . . . 6  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y (.g ` fld ) B )  +  B
) )
29 nn0cn 10722 . . . . . . . . 9  |-  ( y  e.  NN0  ->  y  e.  CC )
3029adantr 463 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  y  e.  CC )
31 1cnd 9523 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  1  e.  CC )
32 simpr 459 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  B  e.  CC )
3330, 31, 32adddird 9532 . . . . . . 7  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 )  x.  B
)  =  ( ( y  x.  B )  +  ( 1  x.  B ) ) )
34 mulid2 9505 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
3534adantl 464 . . . . . . . 8  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( 1  x.  B
)  =  B )
3635oveq2d 6212 . . . . . . 7  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  x.  B )  +  ( 1  x.  B ) )  =  ( ( y  x.  B )  +  B ) )
3733, 36eqtrd 2423 . . . . . 6  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y  +  1 )  x.  B
)  =  ( ( y  x.  B )  +  B ) )
3828, 37eqeq12d 2404 . . . . 5  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B )  <-> 
( ( y (.g ` fld ) B )  +  B
)  =  ( ( y  x.  B )  +  B ) ) )
3922, 38syl5ibr 221 . . . 4  |-  ( ( y  e.  NN0  /\  B  e.  CC )  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B )  ->  ( ( y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B ) ) )
4039expcom 433 . . 3  |-  ( B  e.  CC  ->  (
y  e.  NN0  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( (
y  +  1 ) (.g ` fld ) B )  =  ( ( y  +  1 )  x.  B
) ) ) )
41 fveq2 5774 . . . . 5  |-  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) )  =  ( ( invg ` fld ) `  ( y  x.  B ) ) )
42 eqid 2382 . . . . . . 7  |-  ( invg ` fld )  =  ( invg ` fld )
4316, 18, 42mulgnegnn 16269 . . . . . 6  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y (.g ` fld ) B )  =  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) ) )
44 nncn 10460 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  CC )
45 mulneg1 9911 . . . . . . . 8  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  -u ( y  x.  B
) )
4644, 45sylan 469 . . . . . . 7  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  -u ( y  x.  B
) )
47 mulcl 9487 . . . . . . . . 9  |-  ( ( y  e.  CC  /\  B  e.  CC )  ->  ( y  x.  B
)  e.  CC )
4844, 47sylan 469 . . . . . . . 8  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( y  x.  B
)  e.  CC )
49 cnfldneg 18557 . . . . . . . 8  |-  ( ( y  x.  B )  e.  CC  ->  (
( invg ` fld ) `  ( y  x.  B
) )  =  -u ( y  x.  B
) )
5048, 49syl 16 . . . . . . 7  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( invg ` fld ) `  ( y  x.  B ) )  = 
-u ( y  x.  B ) )
5146, 50eqtr4d 2426 . . . . . 6  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( -u y  x.  B )  =  ( ( invg ` fld ) `  ( y  x.  B
) ) )
5243, 51eqeq12d 2404 . . . . 5  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B )  <->  ( ( invg ` fld ) `  ( y (.g ` fld ) B ) )  =  ( ( invg ` fld ) `  ( y  x.  B ) ) ) )
5341, 52syl5ibr 221 . . . 4  |-  ( ( y  e.  NN  /\  B  e.  CC )  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B )  ->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) )
5453expcom 433 . . 3  |-  ( B  e.  CC  ->  (
y  e.  NN  ->  ( ( y (.g ` fld ) B )  =  ( y  x.  B
)  ->  ( -u y
(.g ` fld ) B )  =  ( -u y  x.  B ) ) ) )
553, 6, 9, 12, 15, 21, 40, 54zindd 10880 . 2  |-  ( B  e.  CC  ->  ( A  e.  ZZ  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) ) )
5655impcom 428 1  |-  ( ( A  e.  ZZ  /\  B  e.  CC )  ->  ( A (.g ` fld ) B )  =  ( A  x.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826   ` cfv 5496  (class class class)co 6196   CCcc 9401   0cc0 9403   1c1 9404    + caddc 9406    x. cmul 9408   -ucneg 9719   NNcn 10452   NN0cn0 10712   ZZcz 10781   Mndcmnd 16036   invgcminusg 16171  .gcmg 16173   Ringcrg 17311  ℂfldccnfld 18533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-addf 9482  ax-mulf 9483
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-oadd 7052  df-er 7229  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-fz 11594  df-seq 12011  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-plusg 14715  df-mulr 14716  df-starv 14717  df-tset 14721  df-ple 14722  df-ds 14724  df-unif 14725  df-0g 14849  df-mgm 15989  df-sgrp 16028  df-mnd 16038  df-grp 16174  df-minusg 16175  df-mulg 16177  df-cmn 16917  df-mgp 17255  df-ring 17313  df-cring 17314  df-cnfld 18534
This theorem is referenced by:  zsssubrg  18589  zringmulg  18609  zringcyg  18619  mulgrhm2  18629  remulg  18734  amgmlem  23436  cnzh  28104  rezh  28105
  Copyright terms: Public domain W3C validator