MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldmul Structured version   Unicode version

Theorem cnfldmul 18237
Description: The multiplication operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldmul  |-  x.  =  ( .r ` fld )

Proof of Theorem cnfldmul
StepHypRef Expression
1 mulex 11220 . 2  |-  x.  e.  _V
2 cnfldstr 18233 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
3 mulrid 14604 . . 3  |-  .r  = Slot  ( .r `  ndx )
4 snsstp3 4180 . . . 4  |-  { <. ( .r `  ndx ) ,  x.  >. }  C_  {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
5 ssun1 3667 . . . . 5  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  C_  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
6 ssun1 3667 . . . . . 6  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  C_  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
7 df-cnfld 18232 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
86, 7sseqtr4i 3537 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  C_fld
95, 8sstri 3513 . . . 4  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  C_fld
104, 9sstri 3513 . . 3  |-  { <. ( .r `  ndx ) ,  x.  >. }  C_fld
112, 3, 10strfv 14527 . 2  |-  (  x.  e.  _V  ->  x.  =  ( .r ` fld )
)
121, 11ax-mp 5 1  |-  x.  =  ( .r ` fld )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   {csn 4027   {ctp 4031   <.cop 4033    o. ccom 5003   ` cfv 5588   CCcc 9491   1c1 9494    + caddc 9496    x. cmul 9498    <_ cle 9630    - cmin 9806   3c3 10587  ;cdc 10977   *ccj 12895   abscabs 13033   ndxcnx 14490   Basecbs 14493   +g cplusg 14558   .rcmulr 14559   *rcstv 14560  TopSetcts 14564   lecple 14565   distcds 14567   UnifSetcunif 14568   MetOpencmopn 18219  metUnifcmetu 18221  ℂfldccnfld 18231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-mulf 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-nn 10538  df-2 10595  df-3 10596  df-4 10597  df-5 10598  df-6 10599  df-7 10600  df-8 10601  df-9 10602  df-10 10603  df-n0 10797  df-z 10866  df-dec 10978  df-uz 11084  df-fz 11674  df-struct 14495  df-ndx 14496  df-slot 14497  df-base 14498  df-plusg 14571  df-mulr 14572  df-starv 14573  df-tset 14577  df-ple 14578  df-ds 14580  df-unif 14581  df-cnfld 18232
This theorem is referenced by:  cncrng  18250  cnfld1  18254  cndrng  18258  cnflddiv  18259  cnfldexp  18262  cnsrng  18263  cnsubrglem  18276  absabv  18283  cnsubrg  18286  cnmsubglem  18288  expmhm  18293  nn0srg  18294  rge0srg  18295  zringmulr  18305  zrngmulr  18311  dvdsrz  18315  zlpirlem3  18323  prmirredlemOLD  18333  expghm  18336  expghmOLD  18337  mulgrhmOLD  18342  psgnghm  18423  psgnco  18426  evpmodpmf1o  18439  remulr  18454  mdetralt  18917  clmmul  21402  clmmcl  21411  cphsubrglem  21451  cphdivcl  21456  cphabscl  21459  cphsqrtcl2  21460  cphsqrtcl3  21461  ipcau2  21504  plypf1  22436  dvply2g  22507  taylply2  22589  reefgim  22671  efabl  22762  efsubm  22763  amgmlem  23144  amgm  23145  wilthlem2  23168  wilthlem3  23169  dchrelbas3  23338  dchrzrhmul  23346  dchrmulcl  23349  dchrn0  23350  dchrinvcl  23353  dchrsum2  23368  sum2dchr  23374  qabvexp  23636  ostthlem2  23638  padicabv  23640  ostth2lem2  23644  ostth3  23648  xrge0slmod  27594  iistmd  27635  xrge0iifmhm  27672  xrge0pluscn  27673  qqhrhm  27721  mzpmfpOLD  30511  cnsrexpcl  30946  cnsrplycl  30948  rngunsnply  30954
  Copyright terms: Public domain W3C validator