MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldds Structured version   Unicode version

Theorem cnfldds 18229
Description: The metric of the field of complex numbers. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldds  |-  ( abs 
o.  -  )  =  ( dist ` fld )

Proof of Theorem cnfldds
StepHypRef Expression
1 absf 13133 . . . 4  |-  abs : CC
--> RR
2 subf 9822 . . . 4  |-  -  :
( CC  X.  CC )
--> CC
3 fco 5741 . . . 4  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
41, 2, 3mp2an 672 . . 3  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
5 cnex 9573 . . . 4  |-  CC  e.  _V
65, 5xpex 6588 . . 3  |-  ( CC 
X.  CC )  e. 
_V
7 reex 9583 . . 3  |-  RR  e.  _V
8 fex2 6739 . . 3  |-  ( ( ( abs  o.  -  ) : ( CC  X.  CC ) --> RR  /\  ( CC  X.  CC )  e. 
_V  /\  RR  e.  _V )  ->  ( abs 
o.  -  )  e.  _V )
94, 6, 7, 8mp3an 1324 . 2  |-  ( abs 
o.  -  )  e.  _V
10 cnfldstr 18221 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
11 dsid 14659 . . 3  |-  dist  = Slot  ( dist `  ndx )
12 snsstp3 4180 . . . 4  |-  { <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }
13 ssun1 3667 . . . . 5  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )
14 ssun2 3668 . . . . . 6  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_  (
( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
15 df-cnfld 18220 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
1614, 15sseqtr4i 3537 . . . . 5  |-  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } )  C_fld
1713, 16sstri 3513 . . . 4  |-  { <. (TopSet `  ndx ) ,  (
MetOpen `  ( abs  o.  -  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_fld
1812, 17sstri 3513 . . 3  |-  { <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  C_fld
1910, 11, 18strfv 14524 . 2  |-  ( ( abs  o.  -  )  e.  _V  ->  ( abs  o. 
-  )  =  (
dist ` fld ) )
209, 19ax-mp 5 1  |-  ( abs 
o.  -  )  =  ( dist ` fld )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   {csn 4027   {ctp 4031   <.cop 4033    X. cxp 4997    o. ccom 5003   -->wf 5584   ` cfv 5588   CCcc 9490   RRcr 9491   1c1 9493    + caddc 9495    x. cmul 9497    <_ cle 9629    - cmin 9805   3c3 10586  ;cdc 10976   *ccj 12892   abscabs 13030   ndxcnx 14487   Basecbs 14490   +g cplusg 14555   .rcmulr 14556   *rcstv 14557  TopSetcts 14561   lecple 14562   distcds 14564   UnifSetcunif 14565   MetOpencmopn 18207  metUnifcmetu 18209  ℂfldccnfld 18219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-rp 11221  df-fz 11673  df-seq 12076  df-exp 12135  df-cj 12895  df-re 12896  df-im 12897  df-sqrt 13031  df-abs 13032  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-plusg 14568  df-mulr 14569  df-starv 14570  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-cnfld 18220
This theorem is referenced by:  reds  18447  cnfldms  21046  cnfldnm  21049  cnngp  21050  cncms  21558  cnfldcusp  21560  reust  21576  qqhcn  27636  qqhucn  27637  cnrrext  27655  cnpwstotbnd  29924  repwsmet  29961  rrnequiv  29962
  Copyright terms: Public domain W3C validator