MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfldadd Structured version   Unicode version

Theorem cnfldadd 18224
Description: The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
Assertion
Ref Expression
cnfldadd  |-  +  =  ( +g  ` fld )

Proof of Theorem cnfldadd
StepHypRef Expression
1 addex 11218 . 2  |-  +  e.  _V
2 cnfldstr 18221 . . 3  |-fld Struct 
<. 1 , ; 1 3 >.
3 plusgid 14590 . . 3  |-  +g  = Slot  ( +g  `  ndx )
4 snsstp2 4179 . . . 4  |-  { <. ( +g  `  ndx ) ,  +  >. }  C_  {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }
5 ssun1 3667 . . . . 5  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  C_  ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )
6 ssun1 3667 . . . . . 6  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  C_  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
7 df-cnfld 18220 . . . . . 6  |-fld  =  ( ( { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  u.  ( {
<. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o. 
-  ) ) >. ,  <. ( le `  ndx ) ,  <_  >. ,  <. (
dist `  ndx ) ,  ( abs  o.  -  ) >. }  u.  { <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
-  ) ) >. } ) )
86, 7sseqtr4i 3537 . . . . 5  |-  ( {
<. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  u.  {
<. ( *r `  ndx ) ,  * >. } )  C_fld
95, 8sstri 3513 . . . 4  |-  { <. (
Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. ,  <. ( .r `  ndx ) ,  x.  >. }  C_fld
104, 9sstri 3513 . . 3  |-  { <. ( +g  `  ndx ) ,  +  >. }  C_fld
112, 3, 10strfv 14524 . 2  |-  (  +  e.  _V  ->  +  =  ( +g  ` fld ) )
121, 11ax-mp 5 1  |-  +  =  ( +g  ` fld )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   {csn 4027   {ctp 4031   <.cop 4033    o. ccom 5003   ` cfv 5588   CCcc 9490   1c1 9493    + caddc 9495    x. cmul 9497    <_ cle 9629    - cmin 9805   3c3 10586  ;cdc 10976   *ccj 12892   abscabs 13030   ndxcnx 14487   Basecbs 14490   +g cplusg 14555   .rcmulr 14556   *rcstv 14557  TopSetcts 14561   lecple 14562   distcds 14564   UnifSetcunif 14565   MetOpencmopn 18207  metUnifcmetu 18209  ℂfldccnfld 18219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-addf 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-2 10594  df-3 10595  df-4 10596  df-5 10597  df-6 10598  df-7 10599  df-8 10600  df-9 10601  df-10 10602  df-n0 10796  df-z 10865  df-dec 10977  df-uz 11083  df-fz 11673  df-struct 14492  df-ndx 14493  df-slot 14494  df-base 14495  df-plusg 14568  df-mulr 14569  df-starv 14570  df-tset 14574  df-ple 14575  df-ds 14577  df-unif 14578  df-cnfld 18220
This theorem is referenced by:  cncrng  18238  cnfld0  18241  cnfldneg  18243  cnfldplusf  18244  cnfldsub  18245  cnfldmulg  18249  cnsrng  18251  cnsubmlem  18262  cnsubglem  18263  absabv  18271  cnsubrg  18274  gsumfsum  18280  expmhm  18281  nn0srg  18282  rge0srg  18283  zringplusg  18291  zrngplusg  18297  zlpirlem3  18311  expghmOLD  18325  mulgghm2OLD  18329  replusg  18441  regsumsupp  18453  clmadd  21337  clmacl  21346  cphsqrtcl2  21396  ipcau2  21440  tdeglem3  22220  tdeglem4  22221  taylply2  22525  jensenlem1  23072  jensenlem2  23073  amgmlem  23075  qabvle  23566  padicabv  23571  ostth2lem2  23575  ostth3  23579  regsumfsum  27463  xrge0slmod  27525  qqhghm  27633  qqhrhm  27634  esumpfinvallem  27748  mzpmfpOLD  30312  fsumcnsrcl  30748  rngunsnply  30755  deg1mhm  30800
  Copyright terms: Public domain W3C validator