MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2lemOLD Structured version   Unicode version

Theorem cnfcom2lemOLD 8149
Description: Lemma for cnfcom2OLD 8150. (Contributed by Mario Carneiro, 30-May-2015.) Obsolete version of cnfcom2lem 8141 as of 3-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cnfcomOLD.s  |-  S  =  dom  ( om CNF  A
)
cnfcomOLD.a  |-  ( ph  ->  A  e.  On )
cnfcomOLD.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcomOLD.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcomOLD.g  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cnfcomOLD.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcomOLD.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcomOLD.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcomOLD.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcomOLD.w  |-  W  =  ( G `  U. dom  G )
cnfcom2OLD.1  |-  ( ph  -> 
(/)  e.  B )
Assertion
Ref Expression
cnfcom2lemOLD  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
Distinct variable groups:    x, k,
z, A    x, M    f, k, x, z, F   
z, T    x, W    f, G, k, x, z   
f, H, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, f, k)    W( z, f, k)

Proof of Theorem cnfcom2lemOLD
StepHypRef Expression
1 cnfcom2OLD.1 . . . . . 6  |-  ( ph  -> 
(/)  e.  B )
2 n0i 3790 . . . . . 6  |-  ( (/)  e.  B  ->  -.  B  =  (/) )
31, 2syl 16 . . . . 5  |-  ( ph  ->  -.  B  =  (/) )
4 cnfcomOLD.f . . . . . . . . . . . . . 14  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcomOLD.s . . . . . . . . . . . . . . . . 17  |-  S  =  dom  ( om CNF  A
)
6 omelon 8059 . . . . . . . . . . . . . . . . . 18  |-  om  e.  On
76a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  om  e.  On )
8 cnfcomOLD.a . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  e.  On )
95, 7, 8cantnff1o 8133 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
10 f1ocnv 5826 . . . . . . . . . . . . . . . 16  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
11 f1of 5814 . . . . . . . . . . . . . . . 16  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
129, 10, 113syl 20 . . . . . . . . . . . . . . 15  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
13 cnfcomOLD.b . . . . . . . . . . . . . . 15  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
1412, 13ffvelrnd 6020 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
154, 14syl5eqel 2559 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  S )
165, 7, 8cantnfsOLD 8111 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  S  <->  ( F : A --> om  /\  ( `' F " ( _V 
\  1o ) )  e.  Fin ) ) )
1715, 16mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  ( F : A --> om  /\  ( `' F " ( _V  \  1o ) )  e.  Fin ) )
1817simpld 459 . . . . . . . . . . 11  |-  ( ph  ->  F : A --> om )
1918adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F : A
--> om )
2019feqmptd 5918 . . . . . . . . 9  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F  =  ( x  e.  A  |->  ( F `  x
) ) )
21 dif0 3897 . . . . . . . . . . . 12  |-  ( A 
\  (/) )  =  A
2221eleq2i 2545 . . . . . . . . . . 11  |-  ( x  e.  ( A  \  (/) )  <->  x  e.  A
)
23 df1o2 7139 . . . . . . . . . . . . . . . 16  |-  1o  =  { (/) }
2423difeq2i 3619 . . . . . . . . . . . . . . 15  |-  ( _V 
\  1o )  =  ( _V  \  { (/)
} )
2524imaeq2i 5333 . . . . . . . . . . . . . 14  |-  ( `' F " ( _V 
\  1o ) )  =  ( `' F " ( _V  \  { (/)
} ) )
26 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  dom  G  =  (/) )  ->  dom  G  =  (/) )
27 cnvimass 5355 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' F " ( _V 
\  1o ) ) 
C_  dom  F
28 fdm 5733 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( F : A --> om  ->  dom 
F  =  A )
2918, 28syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  dom  F  =  A )
3027, 29syl5sseq 3552 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  C_  A
)
318, 30ssexd 4594 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( `' F "
( _V  \  1o ) )  e.  _V )
32 cnfcomOLD.g . . . . . . . . . . . . . . . . . . . . 21  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
335, 7, 8, 32, 15cantnfclOLD 8112 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  (  _E  We  ( `' F " ( _V 
\  1o ) )  /\  dom  G  e. 
om ) )
3433simpld 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  _E  We  ( `' F " ( _V 
\  1o ) ) )
3532oien 7959 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( `' F "
( _V  \  1o ) )  e.  _V  /\  _E  We  ( `' F " ( _V 
\  1o ) ) )  ->  dom  G  ~~  ( `' F " ( _V 
\  1o ) ) )
3631, 34, 35syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  dom  G  ~~  ( `' F " ( _V 
\  1o ) ) )
3736adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  dom  G  =  (/) )  ->  dom  G  ~~  ( `' F "
( _V  \  1o ) ) )
3826, 37eqbrtrrd 4469 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  dom  G  =  (/) )  ->  (/)  ~~  ( `' F " ( _V 
\  1o ) ) )
3938ensymd 7563 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( `' F " ( _V 
\  1o ) ) 
~~  (/) )
40 en0 7575 . . . . . . . . . . . . . . 15  |-  ( ( `' F " ( _V 
\  1o ) ) 
~~  (/)  <->  ( `' F " ( _V  \  1o ) )  =  (/) )
4139, 40sylib 196 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( `' F " ( _V 
\  1o ) )  =  (/) )
4225, 41syl5eqr 2522 . . . . . . . . . . . . 13  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( `' F " ( _V 
\  { (/) } ) )  =  (/) )
43 ss0b 3815 . . . . . . . . . . . . 13  |-  ( ( `' F " ( _V 
\  { (/) } ) )  C_  (/)  <->  ( `' F " ( _V  \  { (/) } ) )  =  (/) )
4442, 43sylibr 212 . . . . . . . . . . . 12  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( `' F " ( _V 
\  { (/) } ) )  C_  (/) )
4519, 44suppssrOLD 6013 . . . . . . . . . . 11  |-  ( ( ( ph  /\  dom  G  =  (/) )  /\  x  e.  ( A  \  (/) ) )  ->  ( F `  x )  =  (/) )
4622, 45sylan2br 476 . . . . . . . . . 10  |-  ( ( ( ph  /\  dom  G  =  (/) )  /\  x  e.  A )  ->  ( F `  x )  =  (/) )
4746mpteq2dva 4533 . . . . . . . . 9  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  (/) ) )
4820, 47eqtrd 2508 . . . . . . . 8  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F  =  ( x  e.  A  |->  (/) ) )
49 fconstmpt 5042 . . . . . . . 8  |-  ( A  X.  { (/) } )  =  ( x  e.  A  |->  (/) )
5048, 49syl6eqr 2526 . . . . . . 7  |-  ( (
ph  /\  dom  G  =  (/) )  ->  F  =  ( A  X.  { (/)
} ) )
5150fveq2d 5868 . . . . . 6  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( A  X.  { (/)
} ) ) )
524fveq2i 5867 . . . . . . . 8  |-  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( `' ( om CNF 
A ) `  B
) )
53 f1ocnvfv2 6169 . . . . . . . . 9  |-  ( ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  /\  B  e.  ( om  ^o  A ) )  ->  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
)  =  B )
549, 13, 53syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( om CNF  A
) `  ( `' ( om CNF  A ) `  B ) )  =  B )
5552, 54syl5eq 2520 . . . . . . 7  |-  ( ph  ->  ( ( om CNF  A
) `  F )  =  B )
5655adantr 465 . . . . . 6  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( ( om CNF  A ) `  F )  =  B )
57 peano1 6697 . . . . . . . . 9  |-  (/)  e.  om
5857a1i 11 . . . . . . . 8  |-  ( ph  -> 
(/)  e.  om )
595, 7, 8, 58cantnf0 8090 . . . . . . 7  |-  ( ph  ->  ( ( om CNF  A
) `  ( A  X.  { (/) } ) )  =  (/) )
6059adantr 465 . . . . . 6  |-  ( (
ph  /\  dom  G  =  (/) )  ->  ( ( om CNF  A ) `  ( A  X.  { (/) } ) )  =  (/) )
6151, 56, 603eqtr3d 2516 . . . . 5  |-  ( (
ph  /\  dom  G  =  (/) )  ->  B  =  (/) )
623, 61mtand 659 . . . 4  |-  ( ph  ->  -.  dom  G  =  (/) )
6333simprd 463 . . . . 5  |-  ( ph  ->  dom  G  e.  om )
64 nnlim 6691 . . . . 5  |-  ( dom 
G  e.  om  ->  -. 
Lim  dom  G )
6563, 64syl 16 . . . 4  |-  ( ph  ->  -.  Lim  dom  G
)
66 ioran 490 . . . 4  |-  ( -.  ( dom  G  =  (/)  \/  Lim  dom  G
)  <->  ( -.  dom  G  =  (/)  /\  -.  Lim  dom 
G ) )
6762, 65, 66sylanbrc 664 . . 3  |-  ( ph  ->  -.  ( dom  G  =  (/)  \/  Lim  dom  G ) )
6832oicl 7950 . . . 4  |-  Ord  dom  G
69 unizlim 4994 . . . 4  |-  ( Ord 
dom  G  ->  ( dom 
G  =  U. dom  G  <-> 
( dom  G  =  (/) 
\/  Lim  dom  G ) ) )
7068, 69ax-mp 5 . . 3  |-  ( dom 
G  =  U. dom  G  <-> 
( dom  G  =  (/) 
\/  Lim  dom  G ) )
7167, 70sylnibr 305 . 2  |-  ( ph  ->  -.  dom  G  = 
U. dom  G )
72 orduniorsuc 6643 . . . 4  |-  ( Ord 
dom  G  ->  ( dom 
G  =  U. dom  G  \/  dom  G  =  suc  U. dom  G
) )
7368, 72mp1i 12 . . 3  |-  ( ph  ->  ( dom  G  = 
U. dom  G  \/  dom  G  =  suc  U. dom  G ) )
7473ord 377 . 2  |-  ( ph  ->  ( -.  dom  G  =  U. dom  G  ->  dom  G  =  suc  U. dom  G ) )
7571, 74mpd 15 1  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    \ cdif 3473    u. cun 3474    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   class class class wbr 4447    |-> cmpt 4505    _E cep 4789    We wwe 4837   Ord word 4877   Oncon0 4878   Lim wlim 4879   suc csuc 4880    X. cxp 4997   `'ccnv 4998   dom cdm 4999   "cima 5002   -->wf 5582   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   omcom 6678  seq𝜔cseqom 7109   1oc1o 7120    +o coa 7124    .o comu 7125    ^o coe 7126    ~~ cen 7510   Fincfn 7513  OrdIsocoi 7930   CNF ccnf 8074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-seqom 7110  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-oexp 7133  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-oi 7931  df-cnf 8075
This theorem is referenced by:  cnfcom2OLD  8150  cnfcom3lemOLD  8151  cnfcom3OLD  8152
  Copyright terms: Public domain W3C validator