MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2OLD Structured version   Unicode version

Theorem cnfcom2OLD 7948
Description: Any nonzero ordinal  B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) Obsolete version of cnfcom2 7940 as of 3-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cnfcomOLD.s  |-  S  =  dom  ( om CNF  A
)
cnfcomOLD.a  |-  ( ph  ->  A  e.  On )
cnfcomOLD.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcomOLD.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcomOLD.g  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cnfcomOLD.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcomOLD.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcomOLD.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcomOLD.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcomOLD.w  |-  W  =  ( G `  U. dom  G )
cnfcom2OLD.1  |-  ( ph  -> 
(/)  e.  B )
Assertion
Ref Expression
cnfcom2OLD  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Distinct variable groups:    x, k,
z, A    x, M    f, k, x, z, F   
z, T    x, W    f, G, k, x, z   
f, H, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, f, k)    W( z, f, k)

Proof of Theorem cnfcom2OLD
StepHypRef Expression
1 cnfcomOLD.s . . . . 5  |-  S  =  dom  ( om CNF  A
)
2 cnfcomOLD.a . . . . 5  |-  ( ph  ->  A  e.  On )
3 cnfcomOLD.b . . . . 5  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
4 cnfcomOLD.f . . . . 5  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcomOLD.g . . . . 5  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
6 cnfcomOLD.h . . . . 5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
7 cnfcomOLD.t . . . . 5  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
8 cnfcomOLD.m . . . . 5  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
9 cnfcomOLD.k . . . . 5  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
10 fvex 5706 . . . . . . . . . . . 12  |-  ( `' ( om CNF  A ) `  B )  e.  _V
114, 10eqeltri 2513 . . . . . . . . . . 11  |-  F  e. 
_V
1211cnvex 6530 . . . . . . . . . 10  |-  `' F  e.  _V
13 imaexg 6520 . . . . . . . . . 10  |-  ( `' F  e.  _V  ->  ( `' F " ( _V 
\  1o ) )  e.  _V )
145oion 7755 . . . . . . . . . 10  |-  ( ( `' F " ( _V 
\  1o ) )  e.  _V  ->  dom  G  e.  On )
1512, 13, 14mp2b 10 . . . . . . . . 9  |-  dom  G  e.  On
1615elexi 2987 . . . . . . . 8  |-  dom  G  e.  _V
1716uniex 6381 . . . . . . 7  |-  U. dom  G  e.  _V
1817sucid 4803 . . . . . 6  |-  U. dom  G  e.  suc  U. dom  G
19 cnfcomOLD.w . . . . . . 7  |-  W  =  ( G `  U. dom  G )
20 cnfcom2OLD.1 . . . . . . 7  |-  ( ph  -> 
(/)  e.  B )
211, 2, 3, 4, 5, 6, 7, 8, 9, 19, 20cnfcom2lemOLD 7947 . . . . . 6  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
2218, 21syl5eleqr 2530 . . . . 5  |-  ( ph  ->  U. dom  G  e. 
dom  G )
231, 2, 3, 4, 5, 6, 7, 8, 9, 22cnfcomOLD 7946 . . . 4  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2419oveq2i 6107 . . . . . 6  |-  ( om 
^o  W )  =  ( om  ^o  ( G `  U. dom  G
) )
2519fveq2i 5699 . . . . . 6  |-  ( F `
 W )  =  ( F `  ( G `  U. dom  G
) )
2624, 25oveq12i 6108 . . . . 5  |-  ( ( om  ^o  W )  .o  ( F `  W ) )  =  ( ( om  ^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )
27 f1oeq3 5639 . . . . 5  |-  ( ( ( om  ^o  W
)  .o  ( F `
 W ) )  =  ( ( om 
^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )  -> 
( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) ) )
2826, 27ax-mp 5 . . . 4  |-  ( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  ( G `  U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2923, 28sylibr 212 . . 3  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
3021fveq2d 5700 . . . 4  |-  ( ph  ->  ( T `  dom  G )  =  ( T `
 suc  U. dom  G
) )
31 f1oeq1 5637 . . . 4  |-  ( ( T `  dom  G
)  =  ( T `
 suc  U. dom  G
)  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
3230, 31syl 16 . . 3  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) ) ) )
3329, 32mpbird 232 . 2  |-  ( ph  ->  ( T `  dom  G ) : ( H `
 suc  U. dom  G
)
-1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
) )
344fveq2i 5699 . . . . 5  |-  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( `' ( om CNF 
A ) `  B
) )
35 omelon 7857 . . . . . . 7  |-  om  e.  On
3635a1i 11 . . . . . 6  |-  ( ph  ->  om  e.  On )
371, 36, 2cantnff1o 7931 . . . . . . . . 9  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
38 f1ocnv 5658 . . . . . . . . 9  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
39 f1of 5646 . . . . . . . . 9  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
4037, 38, 393syl 20 . . . . . . . 8  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
4140, 3ffvelrnd 5849 . . . . . . 7  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
424, 41syl5eqel 2527 . . . . . 6  |-  ( ph  ->  F  e.  S )
438oveq1i 6106 . . . . . . . . . 10  |-  ( M  +o  z )  =  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
)
4443a1i 11 . . . . . . . . 9  |-  ( ( k  e.  _V  /\  z  e.  _V )  ->  ( M  +o  z
)  =  ( ( ( om  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
4544mpt2eq3ia 6156 . . . . . . . 8  |-  ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z ) )  =  ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )
46 eqid 2443 . . . . . . . 8  |-  (/)  =  (/)
47 seqomeq12 6914 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
4845, 46, 47mp2an 672 . . . . . . 7  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( M  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) )
496, 48eqtri 2463 . . . . . 6  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
501, 36, 2, 5, 42, 49cantnfvalOLD 7911 . . . . 5  |-  ( ph  ->  ( ( om CNF  A
) `  F )  =  ( H `  dom  G ) )
5134, 50syl5reqr 2490 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
) )
5221fveq2d 5700 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( H `
 suc  U. dom  G
) )
53 f1ocnvfv2 5989 . . . . 5  |-  ( ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  /\  B  e.  ( om  ^o  A ) )  ->  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
)  =  B )
5437, 3, 53syl2anc 661 . . . 4  |-  ( ph  ->  ( ( om CNF  A
) `  ( `' ( om CNF  A ) `  B ) )  =  B )
5551, 52, 543eqtr3d 2483 . . 3  |-  ( ph  ->  ( H `  suc  U.
dom  G )  =  B )
56 f1oeq2 5638 . . 3  |-  ( ( H `  suc  U. dom  G )  =  B  ->  ( ( T `
 dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
5755, 56syl 16 . 2  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  dom  G ) : B -1-1-onto-> (
( om  ^o  W
)  .o  ( F `
 W ) ) ) )
5833, 57mpbid 210 1  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2977    \ cdif 3330    u. cun 3331   (/)c0 3642   U.cuni 4096    e. cmpt 4355    _E cep 4635   Oncon0 4724   suc csuc 4726   `'ccnv 4844   dom cdm 4845   "cima 4848   -->wf 5419   -1-1-onto->wf1o 5422   ` cfv 5423  (class class class)co 6096    e. cmpt2 6098   omcom 6481  seq𝜔cseqom 6907   1oc1o 6918    +o coa 6922    .o comu 6923    ^o coe 6924  OrdIsocoi 7728   CNF ccnf 7872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-seqom 6908  df-1o 6925  df-2o 6926  df-oadd 6929  df-omul 6930  df-oexp 6931  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-oi 7729  df-cnf 7873
This theorem is referenced by:  cnfcom3OLD  7950
  Copyright terms: Public domain W3C validator