MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2OLD Structured version   Unicode version

Theorem cnfcom2OLD 8150
Description: Any nonzero ordinal  B is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) Obsolete version of cnfcom2 8142 as of 3-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
cnfcomOLD.s  |-  S  =  dom  ( om CNF  A
)
cnfcomOLD.a  |-  ( ph  ->  A  e.  On )
cnfcomOLD.b  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
cnfcomOLD.f  |-  F  =  ( `' ( om CNF 
A ) `  B
)
cnfcomOLD.g  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
cnfcomOLD.h  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
cnfcomOLD.t  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
cnfcomOLD.m  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
cnfcomOLD.k  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
cnfcomOLD.w  |-  W  =  ( G `  U. dom  G )
cnfcom2OLD.1  |-  ( ph  -> 
(/)  e.  B )
Assertion
Ref Expression
cnfcom2OLD  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Distinct variable groups:    x, k,
z, A    x, M    f, k, x, z, F   
z, T    x, W    f, G, k, x, z   
f, H, x    S, k, z    ph, k, x, z
Allowed substitution hints:    ph( f)    A( f)    B( x, z, f, k)    S( x, f)    T( x, f, k)    H( z, k)    K( x, z, f, k)    M( z, f, k)    W( z, f, k)

Proof of Theorem cnfcom2OLD
StepHypRef Expression
1 cnfcomOLD.s . . . . 5  |-  S  =  dom  ( om CNF  A
)
2 cnfcomOLD.a . . . . 5  |-  ( ph  ->  A  e.  On )
3 cnfcomOLD.b . . . . 5  |-  ( ph  ->  B  e.  ( om 
^o  A ) )
4 cnfcomOLD.f . . . . 5  |-  F  =  ( `' ( om CNF 
A ) `  B
)
5 cnfcomOLD.g . . . . 5  |-  G  = OrdIso
(  _E  ,  ( `' F " ( _V 
\  1o ) ) )
6 cnfcomOLD.h . . . . 5  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )
7 cnfcomOLD.t . . . . 5  |-  T  = seq𝜔 ( ( k  e.  _V ,  f  e.  _V  |->  K ) ,  (/) )
8 cnfcomOLD.m . . . . 5  |-  M  =  ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )
9 cnfcomOLD.k . . . . 5  |-  K  =  ( ( x  e.  M  |->  ( dom  f  +o  x ) )  u.  `' ( x  e. 
dom  f  |->  ( M  +o  x ) ) )
10 fvex 5874 . . . . . . . . . . . 12  |-  ( `' ( om CNF  A ) `  B )  e.  _V
114, 10eqeltri 2551 . . . . . . . . . . 11  |-  F  e. 
_V
1211cnvex 6728 . . . . . . . . . 10  |-  `' F  e.  _V
13 imaexg 6718 . . . . . . . . . 10  |-  ( `' F  e.  _V  ->  ( `' F " ( _V 
\  1o ) )  e.  _V )
145oion 7957 . . . . . . . . . 10  |-  ( ( `' F " ( _V 
\  1o ) )  e.  _V  ->  dom  G  e.  On )
1512, 13, 14mp2b 10 . . . . . . . . 9  |-  dom  G  e.  On
1615elexi 3123 . . . . . . . 8  |-  dom  G  e.  _V
1716uniex 6578 . . . . . . 7  |-  U. dom  G  e.  _V
1817sucid 4957 . . . . . 6  |-  U. dom  G  e.  suc  U. dom  G
19 cnfcomOLD.w . . . . . . 7  |-  W  =  ( G `  U. dom  G )
20 cnfcom2OLD.1 . . . . . . 7  |-  ( ph  -> 
(/)  e.  B )
211, 2, 3, 4, 5, 6, 7, 8, 9, 19, 20cnfcom2lemOLD 8149 . . . . . 6  |-  ( ph  ->  dom  G  =  suc  U.
dom  G )
2218, 21syl5eleqr 2562 . . . . 5  |-  ( ph  ->  U. dom  G  e. 
dom  G )
231, 2, 3, 4, 5, 6, 7, 8, 9, 22cnfcomOLD 8148 . . . 4  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2419oveq2i 6293 . . . . . 6  |-  ( om 
^o  W )  =  ( om  ^o  ( G `  U. dom  G
) )
2519fveq2i 5867 . . . . . 6  |-  ( F `
 W )  =  ( F `  ( G `  U. dom  G
) )
2624, 25oveq12i 6294 . . . . 5  |-  ( ( om  ^o  W )  .o  ( F `  W ) )  =  ( ( om  ^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )
27 f1oeq3 5807 . . . . 5  |-  ( ( ( om  ^o  W
)  .o  ( F `
 W ) )  =  ( ( om 
^o  ( G `  U. dom  G ) )  .o  ( F `  ( G `  U. dom  G ) ) )  -> 
( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  ( G `
 U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) ) )
2826, 27ax-mp 5 . . . 4  |-  ( ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  ( G `  U. dom  G
) )  .o  ( F `  ( G `  U. dom  G ) ) ) )
2923, 28sylibr 212 . . 3  |-  ( ph  ->  ( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
3021fveq2d 5868 . . . 4  |-  ( ph  ->  ( T `  dom  G )  =  ( T `
 suc  U. dom  G
) )
31 f1oeq1 5805 . . . 4  |-  ( ( T `  dom  G
)  =  ( T `
 suc  U. dom  G
)  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  suc  U.
dom  G ) : ( H `  suc  U.
dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
3230, 31syl 16 . . 3  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  suc  U. dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) ) ) )
3329, 32mpbird 232 . 2  |-  ( ph  ->  ( T `  dom  G ) : ( H `
 suc  U. dom  G
)
-1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
) )
344fveq2i 5867 . . . . 5  |-  ( ( om CNF  A ) `  F )  =  ( ( om CNF  A ) `  ( `' ( om CNF 
A ) `  B
) )
35 omelon 8059 . . . . . . 7  |-  om  e.  On
3635a1i 11 . . . . . 6  |-  ( ph  ->  om  e.  On )
371, 36, 2cantnff1o 8133 . . . . . . . . 9  |-  ( ph  ->  ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
) )
38 f1ocnv 5826 . . . . . . . . 9  |-  ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  ->  `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S )
39 f1of 5814 . . . . . . . . 9  |-  ( `' ( om CNF  A ) : ( om  ^o  A ) -1-1-onto-> S  ->  `' ( om CNF  A ) : ( om  ^o  A ) --> S )
4037, 38, 393syl 20 . . . . . . . 8  |-  ( ph  ->  `' ( om CNF  A
) : ( om 
^o  A ) --> S )
4140, 3ffvelrnd 6020 . . . . . . 7  |-  ( ph  ->  ( `' ( om CNF 
A ) `  B
)  e.  S )
424, 41syl5eqel 2559 . . . . . 6  |-  ( ph  ->  F  e.  S )
438oveq1i 6292 . . . . . . . . . 10  |-  ( M  +o  z )  =  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
)
4443a1i 11 . . . . . . . . 9  |-  ( ( k  e.  _V  /\  z  e.  _V )  ->  ( M  +o  z
)  =  ( ( ( om  ^o  ( G `  k )
)  .o  ( F `
 ( G `  k ) ) )  +o  z ) )
4544mpt2eq3ia 6344 . . . . . . . 8  |-  ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z ) )  =  ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) )
46 eqid 2467 . . . . . . . 8  |-  (/)  =  (/)
47 seqomeq12 7116 . . . . . . . 8  |-  ( ( ( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) )  =  ( k  e.  _V , 
z  e.  _V  |->  ( ( ( om  ^o  ( G `  k ) )  .o  ( F `
 ( G `  k ) ) )  +o  z ) )  /\  (/)  =  (/) )  -> seq𝜔 (
( k  e.  _V ,  z  e.  _V  |->  ( M  +o  z
) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) ) )
4845, 46, 47mp2an 672 . . . . . . 7  |- seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( M  +o  z ) ) ,  (/) )  = seq𝜔 ( ( k  e. 
_V ,  z  e. 
_V  |->  ( ( ( om  ^o  ( G `
 k ) )  .o  ( F `  ( G `  k ) ) )  +o  z
) ) ,  (/) )
496, 48eqtri 2496 . . . . . 6  |-  H  = seq𝜔 ( ( k  e.  _V ,  z  e.  _V  |->  ( ( ( om 
^o  ( G `  k ) )  .o  ( F `  ( G `  k )
) )  +o  z
) ) ,  (/) )
501, 36, 2, 5, 42, 49cantnfvalOLD 8113 . . . . 5  |-  ( ph  ->  ( ( om CNF  A
) `  F )  =  ( H `  dom  G ) )
5134, 50syl5reqr 2523 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
) )
5221fveq2d 5868 . . . 4  |-  ( ph  ->  ( H `  dom  G )  =  ( H `
 suc  U. dom  G
) )
53 f1ocnvfv2 6169 . . . . 5  |-  ( ( ( om CNF  A ) : S -1-1-onto-> ( om  ^o  A
)  /\  B  e.  ( om  ^o  A ) )  ->  ( ( om CNF  A ) `  ( `' ( om CNF  A
) `  B )
)  =  B )
5437, 3, 53syl2anc 661 . . . 4  |-  ( ph  ->  ( ( om CNF  A
) `  ( `' ( om CNF  A ) `  B ) )  =  B )
5551, 52, 543eqtr3d 2516 . . 3  |-  ( ph  ->  ( H `  suc  U.
dom  G )  =  B )
56 f1oeq2 5806 . . 3  |-  ( ( H `  suc  U. dom  G )  =  B  ->  ( ( T `
 dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W
)  .o  ( F `
 W ) )  <-> 
( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) ) )
5755, 56syl 16 . 2  |-  ( ph  ->  ( ( T `  dom  G ) : ( H `  suc  U. dom  G ) -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W )
)  <->  ( T `  dom  G ) : B -1-1-onto-> (
( om  ^o  W
)  .o  ( F `
 W ) ) ) )
5833, 57mpbid 210 1  |-  ( ph  ->  ( T `  dom  G ) : B -1-1-onto-> ( ( om  ^o  W )  .o  ( F `  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    \ cdif 3473    u. cun 3474   (/)c0 3785   U.cuni 4245    |-> cmpt 4505    _E cep 4789   Oncon0 4878   suc csuc 4880   `'ccnv 4998   dom cdm 4999   "cima 5002   -->wf 5582   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284   omcom 6678  seq𝜔cseqom 7109   1oc1o 7120    +o coa 7124    .o comu 7125    ^o coe 7126  OrdIsocoi 7930   CNF ccnf 8074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-seqom 7110  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-oexp 7133  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-oi 7931  df-cnf 8075
This theorem is referenced by:  cnfcom3OLD  8152
  Copyright terms: Public domain W3C validator