MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Unicode version

Theorem cnextfres 20303
Description:  F and its extension by continuity agree on the domain of  F. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1  |-  C  = 
U. J
cnextf.2  |-  B  = 
U. K
cnextf.3  |-  ( ph  ->  J  e.  Top )
cnextf.4  |-  ( ph  ->  K  e.  Haus )
cnextf.5  |-  ( ph  ->  F : A --> B )
cnextf.a  |-  ( ph  ->  A  C_  C )
cnextf.6  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
cnextf.7  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
cnextcn.8  |-  ( ph  ->  K  e.  Reg )
cnextfres.1  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
Assertion
Ref Expression
cnextfres  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  =  F )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, J    x, K    ph, x

Proof of Theorem cnextfres
Dummy variables  y 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5  |-  C  = 
U. J
2 cnextf.2 . . . . 5  |-  B  = 
U. K
3 cnextf.3 . . . . 5  |-  ( ph  ->  J  e.  Top )
4 cnextf.4 . . . . 5  |-  ( ph  ->  K  e.  Haus )
5 cnextf.5 . . . . 5  |-  ( ph  ->  F : A --> B )
6 cnextf.a . . . . 5  |-  ( ph  ->  A  C_  C )
7 cnextf.6 . . . . 5  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
8 cnextf.7 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
91, 2, 3, 4, 5, 6, 7, 8cnextf 20301 . . . 4  |-  ( ph  ->  ( ( JCnExt K
) `  F ) : C --> B )
10 ffn 5729 . . . 4  |-  ( ( ( JCnExt K ) `
 F ) : C --> B  ->  (
( JCnExt K ) `
 F )  Fn  C )
119, 10syl 16 . . 3  |-  ( ph  ->  ( ( JCnExt K
) `  F )  Fn  C )
12 fnssres 5692 . . 3  |-  ( ( ( ( JCnExt K
) `  F )  Fn  C  /\  A  C_  C )  ->  (
( ( JCnExt K
) `  F )  |`  A )  Fn  A
)
1311, 6, 12syl2anc 661 . 2  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  Fn  A )
14 ffn 5729 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
155, 14syl 16 . 2  |-  ( ph  ->  F  Fn  A )
16 fvres 5878 . . . 4  |-  ( y  e.  A  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( ( ( JCnExt K
) `  F ) `  y ) )
1716adantl 466 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( ( ( JCnExt K
) `  F ) `  y ) )
186sselda 3504 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  C )
191, 2, 3, 4, 5, 6, 7, 8cnextfvval 20300 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  (
( ( JCnExt K
) `  F ) `  y )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
2018, 19syldan 470 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( JCnExt K
) `  F ) `  y )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
215ffvelrnda 6019 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  B )
22 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  A )
231restuni 19429 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  A  C_  C )  ->  A  =  U. ( Jt  A ) )
243, 6, 23syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  U. ( Jt  A ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  =  U. ( Jt  A ) )
2622, 25eleqtrd 2557 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  U. ( Jt  A ) )
27 cnextfres.1 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
28 fvex 5874 . . . . . . . . . . . . . . . . 17  |-  ( ( cls `  J ) `
 A )  e. 
_V
297, 28syl6eqelr 2564 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  _V )
3029, 6ssexd 4594 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  _V )
31 resttop 19427 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( Jt  A )  e.  Top )
323, 30, 31syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Jt  A )  e.  Top )
33 haustop 19598 . . . . . . . . . . . . . . 15  |-  ( K  e.  Haus  ->  K  e. 
Top )
344, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  Top )
3524feq2d 5716 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F : A --> B 
<->  F : U. ( Jt  A ) --> B ) )
365, 35mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : U. ( Jt  A ) --> B )
37 eqid 2467 . . . . . . . . . . . . . . 15  |-  U. ( Jt  A )  =  U. ( Jt  A )
3837, 2cnnei 19549 . . . . . . . . . . . . . 14  |-  ( ( ( Jt  A )  e.  Top  /\  K  e.  Top  /\  F : U. ( Jt  A ) --> B )  -> 
( F  e.  ( ( Jt  A )  Cn  K
)  <->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
)
3932, 34, 36, 38syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  ( ( Jt  A )  Cn  K
)  <->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
)
4027, 39mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4140r19.21bi 2833 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  U. ( Jt  A ) )  ->  A. w  e.  (
( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4226, 41syldan 470 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4342r19.21bi 2833 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  ->  E. v  e.  (
( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
443adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  J  e.  Top )
456adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  C_  C )
46 snssi 4171 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  { y }  C_  A )
4746adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  { y }  C_  A )
481neitr 19447 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  C_  C  /\  {
y }  C_  A
)  ->  ( ( nei `  ( Jt  A ) ) `  { y } )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
4944, 45, 47, 48syl3anc 1228 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( nei `  ( Jt  A ) ) `  { y } )  =  ( ( ( nei `  J ) `
 { y } )t  A ) )
5049rexeqdv 3065 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( E. v  e.  (
( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w  <->  E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
)
5150adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  -> 
( E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w  <->  E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
)
5243, 51mpbid 210 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  ->  E. v  e.  (
( ( nei `  J
) `  { y } )t  A ) ( F
" v )  C_  w )
5352ralrimiva 2878 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
544adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  K  e.  Haus )
552toptopon 19201 . . . . . . . . . 10  |-  ( K  e.  Top  <->  K  e.  (TopOn `  B ) )
5655biimpi 194 . . . . . . . . 9  |-  ( K  e.  Top  ->  K  e.  (TopOn `  B )
)
5754, 33, 563syl 20 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  K  e.  (TopOn `  B )
)
587adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( cls `  J
) `  A )  =  C )
5918, 58eleqtrrd 2558 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  ( ( cls `  J
) `  A )
)
601toptopon 19201 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  C ) )
613, 60sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  C ) )
6261adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  J  e.  (TopOn `  C )
)
63 trnei 20128 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  y  e.  C )  ->  (
y  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) ) )
6462, 45, 18, 63syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  (
y  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) ) )
6559, 64mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) )
665adantr 465 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  F : A --> B )
67 flfnei 20227 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  <->  ( ( F `  y )  e.  B  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
) )
6857, 65, 66, 67syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  <->  ( ( F `  y )  e.  B  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
) )
6921, 53, 68mpbir2and 920 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
70 eleq1 2539 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  C  <->  y  e.  C ) )
7170anbi2d 703 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  x  e.  C )  <->  ( ph  /\  y  e.  C ) ) )
72 sneq 4037 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  { x }  =  { y } )
7372fveq2d 5868 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { y } ) )
7473oveq1d 6297 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( nei `  J
) `  { x } )t  A )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
7574oveq2d 6298 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) )
7675fveq1d 5866 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
7776neeq1d 2744 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/)  <->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) )
7871, 77imbi12d 320 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  C )  ->  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )  <->  ( ( ph  /\  y  e.  C
)  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) ) )
7978, 8chvarv 1983 . . . . . . . 8  |-  ( (
ph  /\  y  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
8018, 79syldan 470 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
812hausflf2 20234 . . . . . . 7  |-  ( ( ( K  e.  Haus  /\  ( ( ( nei `  J ) `  {
y } )t  A )  e.  ( Fil `  A
)  /\  F : A
--> B )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )  -> 
( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )
8254, 65, 66, 80, 81syl31anc 1231 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )
83 en1eqsn 7746 . . . . . 6  |-  ( ( ( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )  ->  ( ( K 
fLimf  ( ( ( nei `  J ) `  {
y } )t  A ) ) `  F )  =  { ( F `
 y ) } )
8469, 82, 83syl2anc 661 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  {
( F `  y
) } )
8584unieqd 4255 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  U. { ( F `  y ) } )
86 fvex 5874 . . . . 5  |-  ( F `
 y )  e. 
_V
8786unisn 4260 . . . 4  |-  U. {
( F `  y
) }  =  ( F `  y )
8885, 87syl6eq 2524 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  ( F `  y ) )
8917, 20, 883eqtrd 2512 . 2  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( F `  y ) )
9013, 15, 89eqfnfvd 5976 1  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113    C_ wss 3476   (/)c0 3785   {csn 4027   U.cuni 4245   class class class wbr 4447    |` cres 5001   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   1oc1o 7120    ~~ cen 7510   ↾t crest 14672   Topctop 19161  TopOnctopon 19162   clsccl 19285   neicnei 19364    Cn ccn 19491   Hauscha 19575   Regcreg 19576   Filcfil 20081    fLimf cflf 20171  CnExtccnext 20294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-rest 14674  df-topgen 14695  df-fbas 18187  df-fg 18188  df-top 19166  df-bases 19168  df-topon 19169  df-cld 19286  df-ntr 19287  df-cls 19288  df-nei 19365  df-cn 19494  df-cnp 19495  df-haus 19582  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-cnext 20295
This theorem is referenced by:  rrhre  27635
  Copyright terms: Public domain W3C validator