MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Unicode version

Theorem cnextfres 19765
Description:  F and its extension by continuity agree on the domain of  F. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1  |-  C  = 
U. J
cnextf.2  |-  B  = 
U. K
cnextf.3  |-  ( ph  ->  J  e.  Top )
cnextf.4  |-  ( ph  ->  K  e.  Haus )
cnextf.5  |-  ( ph  ->  F : A --> B )
cnextf.a  |-  ( ph  ->  A  C_  C )
cnextf.6  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
cnextf.7  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
cnextcn.8  |-  ( ph  ->  K  e.  Reg )
cnextfres.1  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
Assertion
Ref Expression
cnextfres  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  =  F )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, J    x, K    ph, x

Proof of Theorem cnextfres
Dummy variables  y 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5  |-  C  = 
U. J
2 cnextf.2 . . . . 5  |-  B  = 
U. K
3 cnextf.3 . . . . 5  |-  ( ph  ->  J  e.  Top )
4 cnextf.4 . . . . 5  |-  ( ph  ->  K  e.  Haus )
5 cnextf.5 . . . . 5  |-  ( ph  ->  F : A --> B )
6 cnextf.a . . . . 5  |-  ( ph  ->  A  C_  C )
7 cnextf.6 . . . . 5  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
8 cnextf.7 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
91, 2, 3, 4, 5, 6, 7, 8cnextf 19763 . . . 4  |-  ( ph  ->  ( ( JCnExt K
) `  F ) : C --> B )
10 ffn 5660 . . . 4  |-  ( ( ( JCnExt K ) `
 F ) : C --> B  ->  (
( JCnExt K ) `
 F )  Fn  C )
119, 10syl 16 . . 3  |-  ( ph  ->  ( ( JCnExt K
) `  F )  Fn  C )
12 fnssres 5625 . . 3  |-  ( ( ( ( JCnExt K
) `  F )  Fn  C  /\  A  C_  C )  ->  (
( ( JCnExt K
) `  F )  |`  A )  Fn  A
)
1311, 6, 12syl2anc 661 . 2  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  Fn  A )
14 ffn 5660 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
155, 14syl 16 . 2  |-  ( ph  ->  F  Fn  A )
16 fvres 5806 . . . 4  |-  ( y  e.  A  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( ( ( JCnExt K
) `  F ) `  y ) )
1716adantl 466 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( ( ( JCnExt K
) `  F ) `  y ) )
186sselda 3457 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  C )
191, 2, 3, 4, 5, 6, 7, 8cnextfvval 19762 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  (
( ( JCnExt K
) `  F ) `  y )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
2018, 19syldan 470 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( JCnExt K
) `  F ) `  y )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
215ffvelrnda 5945 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  B )
22 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  A )
231restuni 18891 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  A  C_  C )  ->  A  =  U. ( Jt  A ) )
243, 6, 23syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  U. ( Jt  A ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  =  U. ( Jt  A ) )
2622, 25eleqtrd 2541 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  U. ( Jt  A ) )
27 cnextfres.1 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
28 fvex 5802 . . . . . . . . . . . . . . . . 17  |-  ( ( cls `  J ) `
 A )  e. 
_V
297, 28syl6eqelr 2548 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  _V )
3029, 6ssexd 4540 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  _V )
31 resttop 18889 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( Jt  A )  e.  Top )
323, 30, 31syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Jt  A )  e.  Top )
33 haustop 19060 . . . . . . . . . . . . . . 15  |-  ( K  e.  Haus  ->  K  e. 
Top )
344, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  Top )
3524feq2d 5648 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F : A --> B 
<->  F : U. ( Jt  A ) --> B ) )
365, 35mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : U. ( Jt  A ) --> B )
37 eqid 2451 . . . . . . . . . . . . . . 15  |-  U. ( Jt  A )  =  U. ( Jt  A )
3837, 2cnnei 19011 . . . . . . . . . . . . . 14  |-  ( ( ( Jt  A )  e.  Top  /\  K  e.  Top  /\  F : U. ( Jt  A ) --> B )  -> 
( F  e.  ( ( Jt  A )  Cn  K
)  <->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
)
3932, 34, 36, 38syl3anc 1219 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  ( ( Jt  A )  Cn  K
)  <->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
)
4027, 39mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4140r19.21bi 2913 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  U. ( Jt  A ) )  ->  A. w  e.  (
( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4226, 41syldan 470 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4342r19.21bi 2913 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  ->  E. v  e.  (
( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
443adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  J  e.  Top )
456adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  C_  C )
46 snssi 4118 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  { y }  C_  A )
4746adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  { y }  C_  A )
481neitr 18909 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  C_  C  /\  {
y }  C_  A
)  ->  ( ( nei `  ( Jt  A ) ) `  { y } )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
4944, 45, 47, 48syl3anc 1219 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( nei `  ( Jt  A ) ) `  { y } )  =  ( ( ( nei `  J ) `
 { y } )t  A ) )
5049rexeqdv 3023 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( E. v  e.  (
( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w  <->  E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
)
5150adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  -> 
( E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w  <->  E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
)
5243, 51mpbid 210 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  ->  E. v  e.  (
( ( nei `  J
) `  { y } )t  A ) ( F
" v )  C_  w )
5352ralrimiva 2825 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
544adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  K  e.  Haus )
552toptopon 18663 . . . . . . . . . 10  |-  ( K  e.  Top  <->  K  e.  (TopOn `  B ) )
5655biimpi 194 . . . . . . . . 9  |-  ( K  e.  Top  ->  K  e.  (TopOn `  B )
)
5754, 33, 563syl 20 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  K  e.  (TopOn `  B )
)
587adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( cls `  J
) `  A )  =  C )
5918, 58eleqtrrd 2542 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  ( ( cls `  J
) `  A )
)
601toptopon 18663 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  C ) )
613, 60sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  C ) )
6261adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  J  e.  (TopOn `  C )
)
63 trnei 19590 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  y  e.  C )  ->  (
y  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) ) )
6462, 45, 18, 63syl3anc 1219 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  (
y  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) ) )
6559, 64mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) )
665adantr 465 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  F : A --> B )
67 flfnei 19689 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  <->  ( ( F `  y )  e.  B  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
) )
6857, 65, 66, 67syl3anc 1219 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  <->  ( ( F `  y )  e.  B  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
) )
6921, 53, 68mpbir2and 913 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
70 eleq1 2523 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  C  <->  y  e.  C ) )
7170anbi2d 703 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  x  e.  C )  <->  ( ph  /\  y  e.  C ) ) )
72 sneq 3988 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  { x }  =  { y } )
7372fveq2d 5796 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { y } ) )
7473oveq1d 6208 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( nei `  J
) `  { x } )t  A )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
7574oveq2d 6209 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) )
7675fveq1d 5794 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
7776neeq1d 2725 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/)  <->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) )
7871, 77imbi12d 320 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  C )  ->  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )  <->  ( ( ph  /\  y  e.  C
)  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) ) )
7978, 8chvarv 1967 . . . . . . . 8  |-  ( (
ph  /\  y  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
8018, 79syldan 470 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
812hausflf2 19696 . . . . . . 7  |-  ( ( ( K  e.  Haus  /\  ( ( ( nei `  J ) `  {
y } )t  A )  e.  ( Fil `  A
)  /\  F : A
--> B )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )  -> 
( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )
8254, 65, 66, 80, 81syl31anc 1222 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )
83 en1eqsn 7646 . . . . . 6  |-  ( ( ( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )  ->  ( ( K 
fLimf  ( ( ( nei `  J ) `  {
y } )t  A ) ) `  F )  =  { ( F `
 y ) } )
8469, 82, 83syl2anc 661 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  {
( F `  y
) } )
8584unieqd 4202 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  U. { ( F `  y ) } )
86 fvex 5802 . . . . 5  |-  ( F `
 y )  e. 
_V
8786unisn 4207 . . . 4  |-  U. {
( F `  y
) }  =  ( F `  y )
8885, 87syl6eq 2508 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  ( F `  y ) )
8917, 20, 883eqtrd 2496 . 2  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( F `  y ) )
9013, 15, 89eqfnfvd 5902 1  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   _Vcvv 3071    C_ wss 3429   (/)c0 3738   {csn 3978   U.cuni 4192   class class class wbr 4393    |` cres 4943   "cima 4944    Fn wfn 5514   -->wf 5515   ` cfv 5519  (class class class)co 6193   1oc1o 7016    ~~ cen 7410   ↾t crest 14470   Topctop 18623  TopOnctopon 18624   clsccl 18747   neicnei 18826    Cn ccn 18953   Hauscha 19037   Regcreg 19038   Filcfil 19543    fLimf cflf 19633  CnExtccnext 19756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fi 7765  df-rest 14472  df-topgen 14493  df-fbas 17932  df-fg 17933  df-top 18628  df-bases 18630  df-topon 18631  df-cld 18748  df-ntr 18749  df-cls 18750  df-nei 18827  df-cn 18956  df-cnp 18957  df-haus 19044  df-fil 19544  df-fm 19636  df-flim 19637  df-flf 19638  df-cnext 19757
This theorem is referenced by:  rrhre  26585
  Copyright terms: Public domain W3C validator