MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextfres Structured version   Unicode version

Theorem cnextfres 19615
Description:  F and its extension by continuity agree on the domain of  F. (Contributed by Thierry Arnoux, 17-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1  |-  C  = 
U. J
cnextf.2  |-  B  = 
U. K
cnextf.3  |-  ( ph  ->  J  e.  Top )
cnextf.4  |-  ( ph  ->  K  e.  Haus )
cnextf.5  |-  ( ph  ->  F : A --> B )
cnextf.a  |-  ( ph  ->  A  C_  C )
cnextf.6  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
cnextf.7  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
cnextcn.8  |-  ( ph  ->  K  e.  Reg )
cnextfres.1  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
Assertion
Ref Expression
cnextfres  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  =  F )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, J    x, K    ph, x

Proof of Theorem cnextfres
Dummy variables  y 
v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnextf.1 . . . . 5  |-  C  = 
U. J
2 cnextf.2 . . . . 5  |-  B  = 
U. K
3 cnextf.3 . . . . 5  |-  ( ph  ->  J  e.  Top )
4 cnextf.4 . . . . 5  |-  ( ph  ->  K  e.  Haus )
5 cnextf.5 . . . . 5  |-  ( ph  ->  F : A --> B )
6 cnextf.a . . . . 5  |-  ( ph  ->  A  C_  C )
7 cnextf.6 . . . . 5  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
8 cnextf.7 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
91, 2, 3, 4, 5, 6, 7, 8cnextf 19613 . . . 4  |-  ( ph  ->  ( ( JCnExt K
) `  F ) : C --> B )
10 ffn 5554 . . . 4  |-  ( ( ( JCnExt K ) `
 F ) : C --> B  ->  (
( JCnExt K ) `
 F )  Fn  C )
119, 10syl 16 . . 3  |-  ( ph  ->  ( ( JCnExt K
) `  F )  Fn  C )
12 fnssres 5519 . . 3  |-  ( ( ( ( JCnExt K
) `  F )  Fn  C  /\  A  C_  C )  ->  (
( ( JCnExt K
) `  F )  |`  A )  Fn  A
)
1311, 6, 12syl2anc 661 . 2  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  Fn  A )
14 ffn 5554 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
155, 14syl 16 . 2  |-  ( ph  ->  F  Fn  A )
16 fvres 5699 . . . 4  |-  ( y  e.  A  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( ( ( JCnExt K
) `  F ) `  y ) )
1716adantl 466 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( ( ( JCnExt K
) `  F ) `  y ) )
186sselda 3351 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  C )
191, 2, 3, 4, 5, 6, 7, 8cnextfvval 19612 . . . 4  |-  ( (
ph  /\  y  e.  C )  ->  (
( ( JCnExt K
) `  F ) `  y )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
2018, 19syldan 470 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( JCnExt K
) `  F ) `  y )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
215ffvelrnda 5838 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  B )
22 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  A )
231restuni 18741 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  A  C_  C )  ->  A  =  U. ( Jt  A ) )
243, 6, 23syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  A  =  U. ( Jt  A ) )
2524adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  =  U. ( Jt  A ) )
2622, 25eleqtrd 2514 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  U. ( Jt  A ) )
27 cnextfres.1 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e.  ( ( Jt  A )  Cn  K
) )
28 fvex 5696 . . . . . . . . . . . . . . . . 17  |-  ( ( cls `  J ) `
 A )  e. 
_V
297, 28syl6eqelr 2527 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  C  e.  _V )
3029, 6ssexd 4434 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  e.  _V )
31 resttop 18739 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( Jt  A )  e.  Top )
323, 30, 31syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( Jt  A )  e.  Top )
33 haustop 18910 . . . . . . . . . . . . . . 15  |-  ( K  e.  Haus  ->  K  e. 
Top )
344, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  K  e.  Top )
3524feq2d 5542 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( F : A --> B 
<->  F : U. ( Jt  A ) --> B ) )
365, 35mpbid 210 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : U. ( Jt  A ) --> B )
37 eqid 2438 . . . . . . . . . . . . . . 15  |-  U. ( Jt  A )  =  U. ( Jt  A )
3837, 2cnnei 18861 . . . . . . . . . . . . . 14  |-  ( ( ( Jt  A )  e.  Top  /\  K  e.  Top  /\  F : U. ( Jt  A ) --> B )  -> 
( F  e.  ( ( Jt  A )  Cn  K
)  <->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
)
3932, 34, 36, 38syl3anc 1218 . . . . . . . . . . . . 13  |-  ( ph  ->  ( F  e.  ( ( Jt  A )  Cn  K
)  <->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
)
4027, 39mpbid 210 . . . . . . . . . . . 12  |-  ( ph  ->  A. y  e.  U. ( Jt  A ) A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4140r19.21bi 2809 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  U. ( Jt  A ) )  ->  A. w  e.  (
( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4226, 41syldan 470 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
4342r19.21bi 2809 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  ->  E. v  e.  (
( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w )
443adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  J  e.  Top )
456adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  A  C_  C )
46 snssi 4012 . . . . . . . . . . . . 13  |-  ( y  e.  A  ->  { y }  C_  A )
4746adantl 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  A )  ->  { y }  C_  A )
481neitr 18759 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  A  C_  C  /\  {
y }  C_  A
)  ->  ( ( nei `  ( Jt  A ) ) `  { y } )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
4944, 45, 47, 48syl3anc 1218 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  A )  ->  (
( nei `  ( Jt  A ) ) `  { y } )  =  ( ( ( nei `  J ) `
 { y } )t  A ) )
5049rexeqdv 2919 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  ( E. v  e.  (
( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w  <->  E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
)
5150adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  -> 
( E. v  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) ( F " v
)  C_  w  <->  E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
)
5243, 51mpbid 210 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  A )  /\  w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) )  ->  E. v  e.  (
( ( nei `  J
) `  { y } )t  A ) ( F
" v )  C_  w )
5352ralrimiva 2794 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
544adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  K  e.  Haus )
552toptopon 18513 . . . . . . . . . 10  |-  ( K  e.  Top  <->  K  e.  (TopOn `  B ) )
5655biimpi 194 . . . . . . . . 9  |-  ( K  e.  Top  ->  K  e.  (TopOn `  B )
)
5754, 33, 563syl 20 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  K  e.  (TopOn `  B )
)
587adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  (
( cls `  J
) `  A )  =  C )
5918, 58eleqtrrd 2515 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  y  e.  ( ( cls `  J
) `  A )
)
601toptopon 18513 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  C ) )
613, 60sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  C ) )
6261adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  A )  ->  J  e.  (TopOn `  C )
)
63 trnei 19440 . . . . . . . . . 10  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  y  e.  C )  ->  (
y  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) ) )
6462, 45, 18, 63syl3anc 1218 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  A )  ->  (
y  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) ) )
6559, 64mpbid 210 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A ) )
665adantr 465 . . . . . . . 8  |-  ( (
ph  /\  y  e.  A )  ->  F : A --> B )
67 flfnei 19539 . . . . . . . 8  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { y } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  <->  ( ( F `  y )  e.  B  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
) )
6857, 65, 66, 67syl3anc 1218 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  <->  ( ( F `  y )  e.  B  /\  A. w  e.  ( ( nei `  K
) `  { ( F `  y ) } ) E. v  e.  ( ( ( nei `  J ) `  {
y } )t  A ) ( F " v
)  C_  w )
) )
6921, 53, 68mpbir2and 913 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  ( F `  y )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
70 eleq1 2498 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  e.  C  <->  y  e.  C ) )
7170anbi2d 703 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ph  /\  x  e.  C )  <->  ( ph  /\  y  e.  C ) ) )
72 sneq 3882 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  { x }  =  { y } )
7372fveq2d 5690 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { y } ) )
7473oveq1d 6101 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  (
( ( nei `  J
) `  { x } )t  A )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
7574oveq2d 6102 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) )
7675fveq1d 5688 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
7776neeq1d 2616 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/)  <->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) )
7871, 77imbi12d 320 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  C )  ->  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )  <->  ( ( ph  /\  y  e.  C
)  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) ) )
7978, 8chvarv 1958 . . . . . . . 8  |-  ( (
ph  /\  y  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
8018, 79syldan 470 . . . . . . 7  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
812hausflf2 19546 . . . . . . 7  |-  ( ( ( K  e.  Haus  /\  ( ( ( nei `  J ) `  {
y } )t  A )  e.  ( Fil `  A
)  /\  F : A
--> B )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )  -> 
( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )
8254, 65, 66, 80, 81syl31anc 1221 . . . . . 6  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )
83 en1eqsn 7534 . . . . . 6  |-  ( ( ( F `  y
)  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { y } )t  A ) ) `  F )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  ~~  1o )  ->  ( ( K 
fLimf  ( ( ( nei `  J ) `  {
y } )t  A ) ) `  F )  =  { ( F `
 y ) } )
8469, 82, 83syl2anc 661 . . . . 5  |-  ( (
ph  /\  y  e.  A )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  {
( F `  y
) } )
8584unieqd 4096 . . . 4  |-  ( (
ph  /\  y  e.  A )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  U. { ( F `  y ) } )
86 fvex 5696 . . . . 5  |-  ( F `
 y )  e. 
_V
8786unisn 4101 . . . 4  |-  U. {
( F `  y
) }  =  ( F `  y )
8885, 87syl6eq 2486 . . 3  |-  ( (
ph  /\  y  e.  A )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =  ( F `  y ) )
8917, 20, 883eqtrd 2474 . 2  |-  ( (
ph  /\  y  e.  A )  ->  (
( ( ( JCnExt
K ) `  F
)  |`  A ) `  y )  =  ( F `  y ) )
9013, 15, 89eqfnfvd 5795 1  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  |`  A )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2601   A.wral 2710   E.wrex 2711   _Vcvv 2967    C_ wss 3323   (/)c0 3632   {csn 3872   U.cuni 4086   class class class wbr 4287    |` cres 4837   "cima 4838    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   1oc1o 6905    ~~ cen 7299   ↾t crest 14351   Topctop 18473  TopOnctopon 18474   clsccl 18597   neicnei 18676    Cn ccn 18803   Hauscha 18887   Regcreg 18888   Filcfil 19393    fLimf cflf 19483  CnExtccnext 19606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fi 7653  df-rest 14353  df-topgen 14374  df-fbas 17789  df-fg 17790  df-top 18478  df-bases 18480  df-topon 18481  df-cld 18598  df-ntr 18599  df-cls 18600  df-nei 18677  df-cn 18806  df-cnp 18807  df-haus 18894  df-fil 19394  df-fm 19486  df-flim 19487  df-flf 19488  df-cnext 19607
This theorem is referenced by:  rrhre  26399
  Copyright terms: Public domain W3C validator