MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextf Structured version   Unicode version

Theorem cnextf 19660
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017.)
Hypotheses
Ref Expression
cnextf.1  |-  C  = 
U. J
cnextf.2  |-  B  = 
U. K
cnextf.3  |-  ( ph  ->  J  e.  Top )
cnextf.4  |-  ( ph  ->  K  e.  Haus )
cnextf.5  |-  ( ph  ->  F : A --> B )
cnextf.a  |-  ( ph  ->  A  C_  C )
cnextf.6  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
cnextf.7  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
Assertion
Ref Expression
cnextf  |-  ( ph  ->  ( ( JCnExt K
) `  F ) : C --> B )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, J    x, K    ph, x

Proof of Theorem cnextf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cnextf.3 . . . 4  |-  ( ph  ->  J  e.  Top )
2 cnextf.4 . . . 4  |-  ( ph  ->  K  e.  Haus )
3 cnextf.5 . . . 4  |-  ( ph  ->  F : A --> B )
4 cnextf.a . . . 4  |-  ( ph  ->  A  C_  C )
5 cnextf.1 . . . . 5  |-  C  = 
U. J
6 cnextf.2 . . . . 5  |-  B  = 
U. K
75, 6cnextfun 19658 . . . 4  |-  ( ( ( J  e.  Top  /\  K  e.  Haus )  /\  ( F : A --> B  /\  A  C_  C
) )  ->  Fun  ( ( JCnExt K
) `  F )
)
81, 2, 3, 4, 7syl22anc 1219 . . 3  |-  ( ph  ->  Fun  ( ( JCnExt
K ) `  F
) )
9 simpl 457 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  ph )
10 cnextf.6 . . . . . . . . 9  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
1110eleq2d 2510 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  x  e.  C ) )
1211biimpar 485 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  ( ( cls `  J
) `  A )
)
13 cnextf.7 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
14 n0 3667 . . . . . . . 8  |-  ( ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/)  <->  E. y 
y  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { x } )t  A ) ) `  F ) )
1513, 14sylib 196 . . . . . . 7  |-  ( (
ph  /\  x  e.  C )  ->  E. y 
y  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { x } )t  A ) ) `  F ) )
16 haustop 18957 . . . . . . . . . . . . . 14  |-  ( K  e.  Haus  ->  K  e. 
Top )
172, 16syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  Top )
185, 6cnextfval 19656 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  K  e.  Top )  /\  ( F : A --> B  /\  A  C_  C
) )  ->  (
( JCnExt K ) `
 F )  = 
U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
191, 17, 3, 4, 18syl22anc 1219 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( JCnExt K
) `  F )  =  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
2019eleq2d 2510 . . . . . . . . . . 11  |-  ( ph  ->  ( <. x ,  y
>.  e.  ( ( JCnExt
K ) `  F
)  <->  <. x ,  y
>.  e.  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) ) )
21 opeliunxp 4911 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  <->  ( x  e.  ( ( cls `  J
) `  A )  /\  y  e.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
2220, 21syl6bb 261 . . . . . . . . . 10  |-  ( ph  ->  ( <. x ,  y
>.  e.  ( ( JCnExt
K ) `  F
)  <->  ( x  e.  ( ( cls `  J
) `  A )  /\  y  e.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) ) )
2322exbidv 1680 . . . . . . . . 9  |-  ( ph  ->  ( E. y <.
x ,  y >.  e.  ( ( JCnExt K
) `  F )  <->  E. y ( x  e.  ( ( cls `  J
) `  A )  /\  y  e.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) ) )
24 19.42v 1924 . . . . . . . . 9  |-  ( E. y ( x  e.  ( ( cls `  J
) `  A )  /\  y  e.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  <->  ( x  e.  ( ( cls `  J
) `  A )  /\  E. y  y  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
2523, 24syl6bb 261 . . . . . . . 8  |-  ( ph  ->  ( E. y <.
x ,  y >.  e.  ( ( JCnExt K
) `  F )  <->  ( x  e.  ( ( cls `  J ) `
 A )  /\  E. y  y  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) ) )
2625biimpar 485 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ( cls `  J
) `  A )  /\  E. y  y  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )  ->  E. y <. x ,  y >.  e.  ( ( JCnExt K ) `
 F ) )
279, 12, 15, 26syl12anc 1216 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  E. y <. x ,  y >.  e.  ( ( JCnExt K
) `  F )
)
2825simprbda 623 . . . . . . 7  |-  ( (
ph  /\  E. y <. x ,  y >.  e.  ( ( JCnExt K
) `  F )
)  ->  x  e.  ( ( cls `  J
) `  A )
)
2911adantr 465 . . . . . . 7  |-  ( (
ph  /\  E. y <. x ,  y >.  e.  ( ( JCnExt K
) `  F )
)  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  x  e.  C ) )
3028, 29mpbid 210 . . . . . 6  |-  ( (
ph  /\  E. y <. x ,  y >.  e.  ( ( JCnExt K
) `  F )
)  ->  x  e.  C )
3127, 30impbida 828 . . . . 5  |-  ( ph  ->  ( x  e.  C  <->  E. y <. x ,  y
>.  e.  ( ( JCnExt
K ) `  F
) ) )
3231abbi2dv 2564 . . . 4  |-  ( ph  ->  C  =  { x  |  E. y <. x ,  y >.  e.  ( ( JCnExt K ) `
 F ) } )
33 dfdm3 5048 . . . 4  |-  dom  (
( JCnExt K ) `
 F )  =  { x  |  E. y <. x ,  y
>.  e.  ( ( JCnExt
K ) `  F
) }
3432, 33syl6reqr 2494 . . 3  |-  ( ph  ->  dom  ( ( JCnExt
K ) `  F
)  =  C )
35 df-fn 5442 . . 3  |-  ( ( ( JCnExt K ) `
 F )  Fn  C  <->  ( Fun  (
( JCnExt K ) `
 F )  /\  dom  ( ( JCnExt K
) `  F )  =  C ) )
368, 34, 35sylanbrc 664 . 2  |-  ( ph  ->  ( ( JCnExt K
) `  F )  Fn  C )
3719rneqd 5088 . . 3  |-  ( ph  ->  ran  ( ( JCnExt
K ) `  F
)  =  ran  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) ) )
38 rniun 5268 . . . 4  |-  ran  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  = 
U_ x  e.  ( ( cls `  J
) `  A ) ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )
39 vex 2996 . . . . . . . . 9  |-  x  e. 
_V
4039snnz 4014 . . . . . . . 8  |-  { x }  =/=  (/)
41 rnxp 5289 . . . . . . . 8  |-  ( { x }  =/=  (/)  ->  ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )
4240, 41ax-mp 5 . . . . . . 7  |-  ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )
4311biimpa 484 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( cls `  J
) `  A )
)  ->  x  e.  C )
446toptopon 18560 . . . . . . . . . . 11  |-  ( K  e.  Top  <->  K  e.  (TopOn `  B ) )
4517, 44sylib 196 . . . . . . . . . 10  |-  ( ph  ->  K  e.  (TopOn `  B ) )
4645adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  K  e.  (TopOn `  B )
)
475toptopon 18560 . . . . . . . . . . . 12  |-  ( J  e.  Top  <->  J  e.  (TopOn `  C ) )
481, 47sylib 196 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  (TopOn `  C ) )
4948adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  C )  ->  J  e.  (TopOn `  C )
)
504adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  C )  ->  A  C_  C )
51 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  C )
52 trnei 19487 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  x  e.  C )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) ) )
5352biimpa 484 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  x  e.  C )  /\  x  e.  ( ( cls `  J
) `  A )
)  ->  ( (
( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) )
5449, 50, 51, 12, 53syl31anc 1221 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) )
553adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  C )  ->  F : A --> B )
56 flfelbas 19589 . . . . . . . . . . 11  |-  ( ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  /\  y  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  -> 
y  e.  B )
5756ex 434 . . . . . . . . . 10  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
y  e.  ( ( K  fLimf  ( (
( nei `  J
) `  { x } )t  A ) ) `  F )  ->  y  e.  B ) )
5857ssrdv 3383 . . . . . . . . 9  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  C_  B
)
5946, 54, 55, 58syl3anc 1218 . . . . . . . 8  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  C_  B
)
6043, 59syldan 470 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( ( cls `  J
) `  A )
)  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) ) `  F )  C_  B
)
6142, 60syl5eqss 3421 . . . . . 6  |-  ( (
ph  /\  x  e.  ( ( cls `  J
) `  A )
)  ->  ran  ( { x }  X.  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  C_  B )
6261ralrimiva 2820 . . . . 5  |-  ( ph  ->  A. x  e.  ( ( cls `  J
) `  A ) ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  C_  B )
63 iunss 4232 . . . . 5  |-  ( U_ x  e.  ( ( cls `  J ) `  A ) ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  C_  B 
<-> 
A. x  e.  ( ( cls `  J
) `  A ) ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  C_  B )
6462, 63sylibr 212 . . . 4  |-  ( ph  ->  U_ x  e.  ( ( cls `  J
) `  A ) ran  ( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  C_  B )
6538, 64syl5eqss 3421 . . 3  |-  ( ph  ->  ran  U_ x  e.  ( ( cls `  J
) `  A )
( { x }  X.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )  C_  B )
6637, 65eqsstrd 3411 . 2  |-  ( ph  ->  ran  ( ( JCnExt
K ) `  F
)  C_  B )
67 df-f 5443 . 2  |-  ( ( ( JCnExt K ) `
 F ) : C --> B  <->  ( (
( JCnExt K ) `
 F )  Fn  C  /\  ran  (
( JCnExt K ) `
 F )  C_  B ) )
6836, 66, 67sylanbrc 664 1  |-  ( ph  ->  ( ( JCnExt K
) `  F ) : C --> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756   {cab 2429    =/= wne 2620   A.wral 2736    C_ wss 3349   (/)c0 3658   {csn 3898   <.cop 3904   U.cuni 4112   U_ciun 4192    X. cxp 4859   dom cdm 4861   ran crn 4862   Fun wfun 5433    Fn wfn 5434   -->wf 5435   ` cfv 5439  (class class class)co 6112   ↾t crest 14380   Topctop 18520  TopOnctopon 18521   clsccl 18644   neicnei 18723   Hauscha 18934   Filcfil 19440    fLimf cflf 19530  CnExtccnext 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-map 7237  df-pm 7238  df-rest 14382  df-fbas 17836  df-fg 17837  df-top 18525  df-topon 18528  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-haus 18941  df-fil 19441  df-fm 19533  df-flim 19534  df-flf 19535  df-cnext 19654
This theorem is referenced by:  cnextcn  19661  cnextfres  19662
  Copyright terms: Public domain W3C validator