MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnextcn Structured version   Unicode version

Theorem cnextcn 19598
Description: Extension by continuity. Theorem 1 of [BourbakiTop1] p. I.57. Given a topology  J on  C, a subset  A dense in  C, this states a condition for  F from  A to a regular space  K to be extensible by continuity (Contributed by Thierry Arnoux, 1-Jan-2018.)
Hypotheses
Ref Expression
cnextf.1  |-  C  = 
U. J
cnextf.2  |-  B  = 
U. K
cnextf.3  |-  ( ph  ->  J  e.  Top )
cnextf.4  |-  ( ph  ->  K  e.  Haus )
cnextf.5  |-  ( ph  ->  F : A --> B )
cnextf.a  |-  ( ph  ->  A  C_  C )
cnextf.6  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
cnextf.7  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
cnextcn.8  |-  ( ph  ->  K  e.  Reg )
Assertion
Ref Expression
cnextcn  |-  ( ph  ->  ( ( JCnExt K
) `  F )  e.  ( J  Cn  K
) )
Distinct variable groups:    x, A    x, B    x, C    x, F    x, J    x, K    ph, x

Proof of Theorem cnextcn
Dummy variables  y 
b  d  u  v  z  w  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 748 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  ph )
2 simpll 748 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  C )  /\  (
w  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  d  e.  ( ( nei `  J
) `  { x } )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )  ->  ph )
3 simpr3 991 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  C )  /\  (
w  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  d  e.  ( ( nei `  J
) `  { x } )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )  -> 
( ( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w )
4 cnextf.3 . . . . . . . . . . 11  |-  ( ph  ->  J  e.  Top )
54ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  C )  /\  (
w  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  d  e.  ( ( nei `  J
) `  { x } )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )  ->  J  e.  Top )
6 simpr2 990 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  C )  /\  (
w  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  d  e.  ( ( nei `  J
) `  { x } )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )  -> 
d  e.  ( ( nei `  J ) `
 { x }
) )
7 neii2 18671 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  d  e.  ( ( nei `  J ) `  { x } ) )  ->  E. v  e.  J  ( {
x }  C_  v  /\  v  C_  d ) )
85, 6, 7syl2anc 656 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  C )  /\  (
w  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  d  e.  ( ( nei `  J
) `  { x } )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )  ->  E. v  e.  J  ( { x }  C_  v  /\  v  C_  d
) )
9 vex 2973 . . . . . . . . . . . . . . . . . . . 20  |-  x  e. 
_V
109snss 3996 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  v  <->  { x }  C_  v )
1110biimpri 206 . . . . . . . . . . . . . . . . . 18  |-  ( { x }  C_  v  ->  x  e.  v )
1211anim1i 565 . . . . . . . . . . . . . . . . 17  |-  ( ( { x }  C_  v  /\  v  C_  d
)  ->  ( x  e.  v  /\  v  C_  d ) )
1312anim2i 566 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  J  /\  ( { x }  C_  v  /\  v  C_  d
) )  ->  (
v  e.  J  /\  ( x  e.  v  /\  v  C_  d ) ) )
1413anim2i 566 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( v  e.  J  /\  ( { x }  C_  v  /\  v  C_  d
) ) )  -> 
( ph  /\  (
v  e.  J  /\  ( x  e.  v  /\  v  C_  d ) ) ) )
1514ex 434 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( v  e.  J  /\  ( { x }  C_  v  /\  v  C_  d ) )  ->  ( ph  /\  ( v  e.  J  /\  ( x  e.  v  /\  v  C_  d
) ) ) ) )
16 3anass 964 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  J  /\  x  e.  v )  <->  ( ph  /\  ( v  e.  J  /\  x  e.  v
) ) )
1716anbi1i 690 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  J  /\  x  e.  v )  /\  v  C_  d )  <->  ( ( ph  /\  ( v  e.  J  /\  x  e.  v ) )  /\  v  C_  d ) )
18 anass 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
v  e.  J  /\  x  e.  v )
)  /\  v  C_  d )  <->  ( ph  /\  ( ( v  e.  J  /\  x  e.  v )  /\  v  C_  d ) ) )
19 anass 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( v  e.  J  /\  x  e.  v
)  /\  v  C_  d )  <->  ( v  e.  J  /\  (
x  e.  v  /\  v  C_  d ) ) )
2019anbi2i 689 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( (
v  e.  J  /\  x  e.  v )  /\  v  C_  d ) )  <->  ( ph  /\  ( v  e.  J  /\  ( x  e.  v  /\  v  C_  d
) ) ) )
2117, 18, 203bitri 271 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  J  /\  x  e.  v )  /\  v  C_  d )  <->  ( ph  /\  ( v  e.  J  /\  ( x  e.  v  /\  v  C_  d
) ) ) )
22 opnneip 18682 . . . . . . . . . . . . . . . . . 18  |-  ( ( J  e.  Top  /\  v  e.  J  /\  x  e.  v )  ->  v  e.  ( ( nei `  J ) `
 { x }
) )
234, 22syl3an1 1246 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  e.  J  /\  x  e.  v )  ->  v  e.  ( ( nei `  J
) `  { x } ) )
2423adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  J  /\  x  e.  v )  /\  v  C_  d )  ->  v  e.  ( ( nei `  J
) `  { x } ) )
25 simpr2 990 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  C_  d  /\  ( ph  /\  v  e.  J  /\  x  e.  v ) )  -> 
v  e.  J )
2625ex 434 . . . . . . . . . . . . . . . . 17  |-  ( v 
C_  d  ->  (
( ph  /\  v  e.  J  /\  x  e.  v )  ->  v  e.  J ) )
2726imdistanri 686 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  e.  J  /\  x  e.  v )  /\  v  C_  d )  ->  (
v  e.  J  /\  v  C_  d ) )
2824, 27jca 529 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  J  /\  x  e.  v )  /\  v  C_  d )  ->  (
v  e.  ( ( nei `  J ) `
 { x }
)  /\  ( v  e.  J  /\  v  C_  d ) ) )
2921, 28sylbir 213 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  J  /\  (
x  e.  v  /\  v  C_  d ) ) )  ->  ( v  e.  ( ( nei `  J
) `  { x } )  /\  (
v  e.  J  /\  v  C_  d ) ) )
3015, 29syl6 33 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( v  e.  J  /\  ( { x }  C_  v  /\  v  C_  d ) )  ->  ( v  e.  ( ( nei `  J
) `  { x } )  /\  (
v  e.  J  /\  v  C_  d ) ) ) )
3130adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )  ->  ( ( v  e.  J  /\  ( { x }  C_  v  /\  v  C_  d ) )  ->  ( v  e.  ( ( nei `  J
) `  { x } )  /\  (
v  e.  J  /\  v  C_  d ) ) ) )
32 cnextf.4 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  K  e.  Haus )
33 haustop 18894 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  Haus  ->  K  e. 
Top )
3432, 33syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  K  e.  Top )
3534adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  C_  d )  ->  K  e.  Top )
36 imassrn 5177 . . . . . . . . . . . . . . . . . . . 20  |-  ( F
" ( d  i^i 
A ) )  C_  ran  F
37 cnextf.5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  F : A --> B )
38 frn 5562 . . . . . . . . . . . . . . . . . . . . 21  |-  ( F : A --> B  ->  ran  F  C_  B )
3937, 38syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ran  F  C_  B
)
4036, 39syl5ss 3364 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( F " (
d  i^i  A )
)  C_  B )
4140adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  C_  d )  ->  ( F " ( d  i^i 
A ) )  C_  B )
42 ssrin 3572 . . . . . . . . . . . . . . . . . . . 20  |-  ( v 
C_  d  ->  (
v  i^i  A )  C_  ( d  i^i  A
) )
43 imass2 5201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  i^i  A ) 
C_  ( d  i^i 
A )  ->  ( F " ( v  i^i 
A ) )  C_  ( F " ( d  i^i  A ) ) )
4442, 43syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( v 
C_  d  ->  ( F " ( v  i^i 
A ) )  C_  ( F " ( d  i^i  A ) ) )
4544adantl 463 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  v  C_  d )  ->  ( F " ( v  i^i 
A ) )  C_  ( F " ( d  i^i  A ) ) )
46 cnextf.2 . . . . . . . . . . . . . . . . . . 19  |-  B  = 
U. K
4746clsss 18617 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  e.  Top  /\  ( F " ( d  i^i  A ) ) 
C_  B  /\  ( F " ( v  i^i 
A ) )  C_  ( F " ( d  i^i  A ) ) )  ->  ( ( cls `  K ) `  ( F " ( v  i^i  A ) ) )  C_  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) ) )
4835, 41, 45, 47syl3anc 1213 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  v  C_  d )  ->  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  ( ( cls `  K
) `  ( F " ( d  i^i  A
) ) ) )
49 sstr 3361 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  ( ( cls `  K
) `  ( F " ( d  i^i  A
) ) )  /\  ( ( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w )  ->  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )
5048, 49sylan 468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  v  C_  d )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w )  ->  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )
5150an32s 797 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w )  /\  v  C_  d )  ->  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )
5251ex 434 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )  ->  ( v  C_  d  ->  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) )
5352anim2d 562 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )  ->  ( ( v  e.  J  /\  v  C_  d )  ->  (
v  e.  J  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) ) )
5453anim2d 562 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )  ->  ( ( v  e.  ( ( nei `  J
) `  { x } )  /\  (
v  e.  J  /\  v  C_  d ) )  ->  ( v  e.  ( ( nei `  J
) `  { x } )  /\  (
v  e.  J  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) ) ) )
5531, 54syld 44 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )  ->  ( ( v  e.  J  /\  ( { x }  C_  v  /\  v  C_  d ) )  ->  ( v  e.  ( ( nei `  J
) `  { x } )  /\  (
v  e.  J  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) ) ) )
5655reximdv2 2823 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )  ->  ( E. v  e.  J  ( { x }  C_  v  /\  v  C_  d )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) ( v  e.  J  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) ) )
5756imp 429 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w )  /\  E. v  e.  J  ( { x }  C_  v  /\  v  C_  d
) )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) ( v  e.  J  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) )
582, 3, 8, 57syl21anc 1212 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  (
w  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  d  e.  ( ( nei `  J
) `  { x } )  /\  (
( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )  ->  E. v  e.  (
( nei `  J
) `  { x } ) ( v  e.  J  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) )
59583anassrs 1204 . . . . . . 7  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  d  e.  ( ( nei `  J
) `  { x } ) )  /\  ( ( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) ( v  e.  J  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) )
60 simpr 458 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) )  /\  ( ( cls `  K ) `
 ( F "
u ) )  C_  w )  ->  (
( cls `  K
) `  ( F " u ) )  C_  w )
61 simp-4l 760 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) )  /\  ( ( cls `  K ) `
 ( F "
u ) )  C_  w )  ->  ph )
62 simplr 749 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) )  /\  ( ( cls `  K ) `
 ( F "
u ) )  C_  w )  ->  u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) )
63 fvex 5698 . . . . . . . . . . . . . 14  |-  ( ( nei `  J ) `
 { x }
)  e.  _V
6463a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( nei `  J
) `  { x } )  e.  _V )
65 cnextf.1 . . . . . . . . . . . . . . . . 17  |-  C  = 
U. J
6665toptopon 18497 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  <->  J  e.  (TopOn `  C ) )
674, 66sylib 196 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  (TopOn `  C ) )
6867elfvexd 5715 . . . . . . . . . . . . . 14  |-  ( ph  ->  C  e.  _V )
69 cnextf.a . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  C )
7068, 69ssexd 4436 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  _V )
71 elrest 14362 . . . . . . . . . . . . 13  |-  ( ( ( ( nei `  J
) `  { x } )  e.  _V  /\  A  e.  _V )  ->  ( u  e.  ( ( ( nei `  J
) `  { x } )t  A )  <->  E. d  e.  ( ( nei `  J
) `  { x } ) u  =  ( d  i^i  A
) ) )
7264, 70, 71syl2anc 656 . . . . . . . . . . . 12  |-  ( ph  ->  ( u  e.  ( ( ( nei `  J
) `  { x } )t  A )  <->  E. d  e.  ( ( nei `  J
) `  { x } ) u  =  ( d  i^i  A
) ) )
7372biimpa 481 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) )  ->  E. d  e.  ( ( nei `  J
) `  { x } ) u  =  ( d  i^i  A
) )
74 imaeq2 5162 . . . . . . . . . . . . . . 15  |-  ( u  =  ( d  i^i 
A )  ->  ( F " u )  =  ( F " (
d  i^i  A )
) )
7574fveq2d 5692 . . . . . . . . . . . . . 14  |-  ( u  =  ( d  i^i 
A )  ->  (
( cls `  K
) `  ( F " u ) )  =  ( ( cls `  K
) `  ( F " ( d  i^i  A
) ) ) )
7675sseq1d 3380 . . . . . . . . . . . . 13  |-  ( u  =  ( d  i^i 
A )  ->  (
( ( cls `  K
) `  ( F " u ) )  C_  w 
<->  ( ( cls `  K
) `  ( F " ( d  i^i  A
) ) )  C_  w ) )
7776biimpcd 224 . . . . . . . . . . . 12  |-  ( ( ( cls `  K
) `  ( F " u ) )  C_  w  ->  ( u  =  ( d  i^i  A
)  ->  ( ( cls `  K ) `  ( F " ( d  i^i  A ) ) )  C_  w )
)
7877reximdv 2825 . . . . . . . . . . 11  |-  ( ( ( cls `  K
) `  ( F " u ) )  C_  w  ->  ( E. d  e.  ( ( nei `  J
) `  { x } ) u  =  ( d  i^i  A
)  ->  E. d  e.  ( ( nei `  J
) `  { x } ) ( ( cls `  K ) `
 ( F "
( d  i^i  A
) ) )  C_  w ) )
7973, 78syl5 32 . . . . . . . . . 10  |-  ( ( ( cls `  K
) `  ( F " u ) )  C_  w  ->  ( ( ph  /\  u  e.  ( ( ( nei `  J
) `  { x } )t  A ) )  ->  E. d  e.  (
( nei `  J
) `  { x } ) ( ( cls `  K ) `
 ( F "
( d  i^i  A
) ) )  C_  w ) )
8079imp 429 . . . . . . . . 9  |-  ( ( ( ( cls `  K
) `  ( F " u ) )  C_  w  /\  ( ph  /\  u  e.  ( (
( nei `  J
) `  { x } )t  A ) ) )  ->  E. d  e.  ( ( nei `  J
) `  { x } ) ( ( cls `  K ) `
 ( F "
( d  i^i  A
) ) )  C_  w )
8160, 61, 62, 80syl12anc 1211 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) )  /\  ( ( cls `  K ) `
 ( F "
u ) )  C_  w )  ->  E. d  e.  ( ( nei `  J
) `  { x } ) ( ( cls `  K ) `
 ( F "
( d  i^i  A
) ) )  C_  w )
82 simplll 752 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  ( ph  /\  x  e.  C
) )
83 simplr 749 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )
84 cnextf.6 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( cls `  J
) `  A )  =  C )
85 eleq1 2501 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  (
x  e.  C  <->  y  e.  C ) )
8685anbi2d 698 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( ph  /\  x  e.  C )  <->  ( ph  /\  y  e.  C ) ) )
87 sneq 3884 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  y  ->  { x }  =  { y } )
8887fveq2d 5692 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  y  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { y } ) )
8988oveq1d 6105 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  y  ->  (
( ( nei `  J
) `  { x } )t  A )  =  ( ( ( nei `  J
) `  { y } )t  A ) )
9089oveq2d 6106 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) )
9190fveq1d 5690 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  y  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F ) )
9291neeq1d 2619 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/)  <->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) )
9386, 92imbi12d 320 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( ( ph  /\  x  e.  C )  ->  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )  <->  ( ( ph  /\  y  e.  C
)  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { y } )t  A ) ) `  F )  =/=  (/) ) ) )
94 cnextf.7 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )
9593, 94chvarv 1963 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { y } )t  A ) ) `  F )  =/=  (/) )
9665, 46, 4, 32, 37, 69, 84, 95cnextfvval 19596 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  C )  ->  (
( ( JCnExt K
) `  F ) `  x )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )
97 fvex 5698 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  fLimf  ( (
( nei `  J
) `  { x } )t  A ) ) `  F )  e.  _V
9897uniex 6375 . . . . . . . . . . . . . . . . 17  |-  U. (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  e.  _V
9998snid 3902 . . . . . . . . . . . . . . . 16  |-  U. (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  e.  { U. ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) }
10032adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  C )  ->  K  e.  Haus )
10184eleq2d 2508 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( x  e.  ( ( cls `  J
) `  A )  <->  x  e.  C ) )
102101biimpar 482 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  ( ( cls `  J
) `  A )
)
10367adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  C )  ->  J  e.  (TopOn `  C )
)
10469adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  C )  ->  A  C_  C )
105 simpr 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  C )  ->  x  e.  C )
106 trnei 19424 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  x  e.  C )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) ) )
107103, 104, 105, 106syl3anc 1213 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  C )  ->  (
x  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) ) )
108102, 107mpbid 210 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  C )  ->  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A ) )
10937adantr 462 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  C )  ->  F : A --> B )
11046hausflf2 19530 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  e.  Haus  /\  ( ( ( nei `  J ) `  {
x } )t  A )  e.  ( Fil `  A
)  /\  F : A
--> B )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )  -> 
( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  ~~  1o )
111100, 108, 109, 94, 110syl31anc 1216 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  ~~  1o )
112 en1b 7373 . . . . . . . . . . . . . . . . 17  |-  ( ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  ~~  1o  <->  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  { U. ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) } )
113111, 112sylib 196 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  { U. ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) } )
11499, 113syl5eleqr 2528 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  C )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )
11596, 114eqeltrd 2515 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  C )  ->  (
( ( JCnExt K
) `  F ) `  x )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F ) )
11646toptopon 18497 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  Top  <->  K  e.  (TopOn `  B ) )
11734, 116sylib 196 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  K  e.  (TopOn `  B ) )
118117adantr 462 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  C )  ->  K  e.  (TopOn `  B )
)
119 flfnei 19523 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { x } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  <->  ( (
( ( JCnExt K
) `  F ) `  x )  e.  B  /\  A. b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b ) ) )
120118, 108, 109, 119syl3anc 1213 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  C )  ->  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  <->  ( (
( ( JCnExt K
) `  F ) `  x )  e.  B  /\  A. b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b ) ) )
121115, 120mpbid 210 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  C )  ->  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  B  /\  A. b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b ) )
122121simprd 460 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  C )  ->  A. b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b )
123122r19.21bi 2812 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  C )  /\  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) ( F " u
)  C_  b )
12482, 83, 123syl2anc 656 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  E. u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) ( F " u
)  C_  b )
12534ad3antrrr 724 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  C )  /\  b  e.  (
( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  K  e.  Top )
126 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  C )  /\  b  e.  (
( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )
12746neii1 18669 . . . . . . . . . . . . 13  |-  ( ( K  e.  Top  /\  b  e.  ( ( nei `  K ) `  { ( ( ( JCnExt K ) `  F ) `  x
) } ) )  ->  b  C_  B
)
128125, 126, 127syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  C )  /\  b  e.  (
( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  b  C_  B )
129 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  C )  /\  b  e.  (
( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  (
( cls `  K
) `  b )  C_  w )
13046clsss 18617 . . . . . . . . . . . . . . . 16  |-  ( ( K  e.  Top  /\  b  C_  B  /\  ( F " u )  C_  b )  ->  (
( cls `  K
) `  ( F " u ) )  C_  ( ( cls `  K
) `  b )
)
131 sstr 3361 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( cls `  K
) `  ( F " u ) )  C_  ( ( cls `  K
) `  b )  /\  ( ( cls `  K
) `  b )  C_  w )  ->  (
( cls `  K
) `  ( F " u ) )  C_  w )
132130, 131sylan 468 . . . . . . . . . . . . . . 15  |-  ( ( ( K  e.  Top  /\  b  C_  B  /\  ( F " u ) 
C_  b )  /\  ( ( cls `  K
) `  b )  C_  w )  ->  (
( cls `  K
) `  ( F " u ) )  C_  w )
1331323an1rs 1194 . . . . . . . . . . . . . 14  |-  ( ( ( K  e.  Top  /\  b  C_  B  /\  ( ( cls `  K
) `  b )  C_  w )  /\  ( F " u )  C_  b )  ->  (
( cls `  K
) `  ( F " u ) )  C_  w )
134133ex 434 . . . . . . . . . . . . 13  |-  ( ( K  e.  Top  /\  b  C_  B  /\  (
( cls `  K
) `  b )  C_  w )  ->  (
( F " u
)  C_  b  ->  ( ( cls `  K
) `  ( F " u ) )  C_  w ) )
135134reximdv 2825 . . . . . . . . . . . 12  |-  ( ( K  e.  Top  /\  b  C_  B  /\  (
( cls `  K
) `  b )  C_  w )  ->  ( E. u  e.  (
( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b  ->  E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( ( cls `  K ) `
 ( F "
u ) )  C_  w ) )
136125, 128, 129, 135syl3anc 1213 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  C )  /\  b  e.  (
( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  ( E. u  e.  (
( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b  ->  E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( ( cls `  K ) `
 ( F "
u ) )  C_  w ) )
137136adantllr 713 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  ( E. u  e.  (
( ( nei `  J
) `  { x } )t  A ) ( F
" u )  C_  b  ->  E. u  e.  ( ( ( nei `  J
) `  { x } )t  A ) ( ( cls `  K ) `
 ( F "
u ) )  C_  w ) )
138124, 137mpd 15 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  E. u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) ( ( cls `  K
) `  ( F " u ) )  C_  w )
13934ad2antrr 720 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  K  e.  Top )
140 cnextcn.8 . . . . . . . . . . . . . . 15  |-  ( ph  ->  K  e.  Reg )
141140ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  K  e.  Reg )
142141ad2antrr 720 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  c  e.  K )  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w ) )  ->  K  e.  Reg )
143 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  c  e.  K )  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w ) )  -> 
c  e.  K )
144 simprl 750 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  c  e.  K )  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w ) )  -> 
( ( ( JCnExt
K ) `  F
) `  x )  e.  c )
145 regsep 18897 . . . . . . . . . . . . 13  |-  ( ( K  e.  Reg  /\  c  e.  K  /\  ( ( ( JCnExt
K ) `  F
) `  x )  e.  c )  ->  E. b  e.  K  ( (
( ( JCnExt K
) `  F ) `  x )  e.  b  /\  ( ( cls `  K ) `  b
)  C_  c )
)
146142, 143, 144, 145syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  c  e.  K )  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w ) )  ->  E. b  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  c ) )
147 sstr 3361 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( cls `  K
) `  b )  C_  c  /\  c  C_  w )  ->  (
( cls `  K
) `  b )  C_  w )
148147expcom 435 . . . . . . . . . . . . . . 15  |-  ( c 
C_  w  ->  (
( ( cls `  K
) `  b )  C_  c  ->  ( ( cls `  K ) `  b )  C_  w
) )
149148anim2d 562 . . . . . . . . . . . . . 14  |-  ( c 
C_  w  ->  (
( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  c )  ->  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  b  /\  (
( cls `  K
) `  b )  C_  w ) ) )
150149reximdv 2825 . . . . . . . . . . . . 13  |-  ( c 
C_  w  ->  ( E. b  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  c )  ->  E. b  e.  K  ( (
( ( JCnExt K
) `  F ) `  x )  e.  b  /\  ( ( cls `  K ) `  b
)  C_  w )
) )
151150ad2antll 723 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  c  e.  K )  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w ) )  -> 
( E. b  e.  K  ( ( ( ( JCnExt K ) `
 F ) `  x )  e.  b  /\  ( ( cls `  K ) `  b
)  C_  c )  ->  E. b  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  w ) ) )
152146, 151mpd 15 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  /\  c  e.  K )  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w ) )  ->  E. b  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  w ) )
153 simpr 458 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )
154 neii2 18671 . . . . . . . . . . . . 13  |-  ( ( K  e.  Top  /\  w  e.  ( ( nei `  K ) `  { ( ( ( JCnExt K ) `  F ) `  x
) } ) )  ->  E. c  e.  K  ( { ( ( ( JCnExt K ) `  F ) `  x
) }  C_  c  /\  c  C_  w ) )
155 fvex 5698 . . . . . . . . . . . . . . . . 17  |-  ( ( ( JCnExt K ) `
 F ) `  x )  e.  _V
156155snss 3996 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( JCnExt K
) `  F ) `  x )  e.  c  <->  { ( ( ( JCnExt K ) `  F ) `  x
) }  C_  c
)
157156anbi1i 690 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( JCnExt
K ) `  F
) `  x )  e.  c  /\  c  C_  w )  <->  ( {
( ( ( JCnExt
K ) `  F
) `  x ) }  C_  c  /\  c  C_  w ) )
158157biimpri 206 . . . . . . . . . . . . . 14  |-  ( ( { ( ( ( JCnExt K ) `  F ) `  x
) }  C_  c  /\  c  C_  w )  ->  ( ( ( ( JCnExt K ) `
 F ) `  x )  e.  c  /\  c  C_  w
) )
159158reximi 2821 . . . . . . . . . . . . 13  |-  ( E. c  e.  K  ( { ( ( ( JCnExt K ) `  F ) `  x
) }  C_  c  /\  c  C_  w )  ->  E. c  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  c  /\  c  C_  w ) )
160154, 159syl 16 . . . . . . . . . . . 12  |-  ( ( K  e.  Top  /\  w  e.  ( ( nei `  K ) `  { ( ( ( JCnExt K ) `  F ) `  x
) } ) )  ->  E. c  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  c  /\  c  C_  w ) )
161139, 153, 160syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. c  e.  K  ( (
( ( JCnExt K
) `  F ) `  x )  e.  c  /\  c  C_  w
) )
162152, 161r19.29a 2860 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. b  e.  K  ( (
( ( JCnExt K
) `  F ) `  x )  e.  b  /\  ( ( cls `  K ) `  b
)  C_  w )
)
163 anass 644 . . . . . . . . . . . 12  |-  ( ( ( b  e.  K  /\  ( ( ( JCnExt
K ) `  F
) `  x )  e.  b )  /\  (
( cls `  K
) `  b )  C_  w )  <->  ( b  e.  K  /\  (
( ( ( JCnExt
K ) `  F
) `  x )  e.  b  /\  (
( cls `  K
) `  b )  C_  w ) ) )
164 opnneip 18682 . . . . . . . . . . . . . 14  |-  ( ( K  e.  Top  /\  b  e.  K  /\  ( ( ( JCnExt
K ) `  F
) `  x )  e.  b )  ->  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )
1651643expib 1185 . . . . . . . . . . . . 13  |-  ( K  e.  Top  ->  (
( b  e.  K  /\  ( ( ( JCnExt
K ) `  F
) `  x )  e.  b )  ->  b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) ) )
166165anim1d 561 . . . . . . . . . . . 12  |-  ( K  e.  Top  ->  (
( ( b  e.  K  /\  ( ( ( JCnExt K ) `
 F ) `  x )  e.  b )  /\  ( ( cls `  K ) `
 b )  C_  w )  ->  (
b  e.  ( ( nei `  K ) `
 { ( ( ( JCnExt K ) `
 F ) `  x ) } )  /\  ( ( cls `  K ) `  b
)  C_  w )
) )
167163, 166syl5bir 218 . . . . . . . . . . 11  |-  ( K  e.  Top  ->  (
( b  e.  K  /\  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  w ) )  -> 
( b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } )  /\  ( ( cls `  K ) `  b
)  C_  w )
) )
168167reximdv2 2823 . . . . . . . . . 10  |-  ( K  e.  Top  ->  ( E. b  e.  K  ( ( ( ( JCnExt K ) `  F ) `  x
)  e.  b  /\  ( ( cls `  K
) `  b )  C_  w )  ->  E. b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) ( ( cls `  K
) `  b )  C_  w ) )
169139, 162, 168sylc 60 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. b  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) ( ( cls `  K
) `  b )  C_  w )
170138, 169r19.29a 2860 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. u  e.  ( ( ( nei `  J ) `  {
x } )t  A ) ( ( cls `  K
) `  ( F " u ) )  C_  w )
17181, 170r19.29a 2860 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. d  e.  ( ( nei `  J
) `  { x } ) ( ( cls `  K ) `
 ( F "
( d  i^i  A
) ) )  C_  w )
17259, 171r19.29a 2860 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) ( v  e.  J  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w ) )
173 simplr 749 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  v  e.  J )  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )  /\  z  e.  v )  ->  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )
174 simpll 748 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  ph )
1754ad2antrr 720 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  J  e.  Top )
176 simplr 749 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  v  e.  J )
17765eltopss 18479 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  v  e.  J )  ->  v  C_  C )
178175, 176, 177syl2anc 656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  v  C_  C )
179 simpr 458 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  z  e.  v )
180178, 179sseldd 3354 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  z  e.  C )
181 fvex 5698 . . . . . . . . . . . . . . 15  |-  ( ( nei `  J ) `
 { z } )  e.  _V
182181a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  (
( nei `  J
) `  { z } )  e.  _V )
18370ad2antrr 720 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  A  e.  _V )
184 opnneip 18682 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  v  e.  J  /\  z  e.  v )  ->  v  e.  ( ( nei `  J ) `
 { z } ) )
1854, 184syl3an1 1246 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  v  e.  J  /\  z  e.  v )  ->  v  e.  ( ( nei `  J
) `  { z } ) )
1861853expa 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  v  e.  ( ( nei `  J
) `  { z } ) )
187 elrestr 14363 . . . . . . . . . . . . . 14  |-  ( ( ( ( nei `  J
) `  { z } )  e.  _V  /\  A  e.  _V  /\  v  e.  ( ( nei `  J ) `  { z } ) )  ->  ( v  i^i  A )  e.  ( ( ( nei `  J
) `  { z } )t  A ) )
188182, 183, 186, 187syl3anc 1213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )
18965, 46, 4, 32, 37, 69, 84, 94cnextfvval 19596 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z  e.  C )  ->  (
( ( JCnExt K
) `  F ) `  z )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) )
190189adantr 462 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( (
( JCnExt K ) `
 F ) `  z )  =  U. ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) )
19132adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  C )  ->  K  e.  Haus )
19284eleq2d 2508 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( z  e.  ( ( cls `  J
) `  A )  <->  z  e.  C ) )
193192biimpar 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  C )  ->  z  e.  ( ( cls `  J
) `  A )
)
19467adantr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  z  e.  C )  ->  J  e.  (TopOn `  C )
)
19569adantr 462 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  z  e.  C )  ->  A  C_  C )
196 simpr 458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  z  e.  C )  ->  z  e.  C )
197 trnei 19424 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( J  e.  (TopOn `  C )  /\  A  C_  C  /\  z  e.  C )  ->  (
z  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A ) ) )
198194, 195, 196, 197syl3anc 1213 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  C )  ->  (
z  e.  ( ( cls `  J ) `
 A )  <->  ( (
( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A ) ) )
199193, 198mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  C )  ->  (
( ( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A ) )
20037adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  C )  ->  F : A --> B )
201 eleq1 2501 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  (
x  e.  C  <->  z  e.  C ) )
202201anbi2d 698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( ph  /\  x  e.  C )  <->  ( ph  /\  z  e.  C ) ) )
203 sneq 3884 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  =  z  ->  { x }  =  { z } )
204203fveq2d 5692 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  =  z  ->  (
( nei `  J
) `  { x } )  =  ( ( nei `  J
) `  { z } ) )
205204oveq1d 6105 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( ( nei `  J
) `  { x } )t  A )  =  ( ( ( nei `  J
) `  { z } )t  A ) )
206205oveq2d 6106 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  ( K  fLimf  ( ( ( nei `  J ) `
 { x }
)t 
A ) )  =  ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) )
207206fveq1d 5690 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  =  z  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =  ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) )
208207neeq1d 2619 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  z  ->  (
( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/)  <->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { z } )t  A ) ) `  F )  =/=  (/) ) )
209202, 208imbi12d 320 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  (
( ( ph  /\  x  e.  C )  ->  ( ( K  fLimf  ( ( ( nei `  J
) `  { x } )t  A ) ) `  F )  =/=  (/) )  <->  ( ( ph  /\  z  e.  C
)  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { z } )t  A ) ) `  F )  =/=  (/) ) ) )
210209, 94chvarv 1963 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  =/=  (/) )
21146hausflf2 19530 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( K  e.  Haus  /\  ( ( ( nei `  J ) `  {
z } )t  A )  e.  ( Fil `  A
)  /\  F : A
--> B )  /\  (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  =/=  (/) )  -> 
( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  ~~  1o )
212191, 199, 200, 210, 211syl31anc 1216 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  ~~  1o )
213 en1b 7373 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  ~~  1o  <->  ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  =  { U. ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) } )
214212, 213sylib 196 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  z  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  =  { U. ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) } )
215214adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { z } )t  A ) ) `  F )  =  { U. ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) } )
216117adantr 462 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  C )  ->  K  e.  (TopOn `  B )
)
217 flfval 19522 . . . . . . . . . . . . . . . . . . 19  |-  ( ( K  e.  (TopOn `  B )  /\  (
( ( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A )  /\  F : A --> B )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  =  ( K  fLim  ( ( B  FilMap  F ) `  ( ( ( nei `  J ) `  {
z } )t  A ) ) ) )
218216, 199, 200, 217syl3anc 1213 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  z  e.  C )  ->  (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  =  ( K  fLim  ( ( B  FilMap  F ) `  ( ( ( nei `  J ) `  {
z } )t  A ) ) ) )
219218adantr 462 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { z } )t  A ) ) `  F )  =  ( K  fLim  ( ( B  FilMap  F ) `  ( ( ( nei `  J ) `  {
z } )t  A ) ) ) )
220 uniexg 6376 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( K  e.  Haus  ->  U. K  e.  _V )
22132, 220syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  U. K  e.  _V )
222221ad2antrr 720 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  U. K  e. 
_V )
22346, 222syl5eqel 2525 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  B  e.  _V )
224199adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( (
( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A ) )
225 filfbas 19380 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A )  ->  ( ( ( nei `  J ) `
 { z } )t  A )  e.  (
fBas `  A )
)
226224, 225syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( (
( nei `  J
) `  { z } )t  A )  e.  (
fBas `  A )
)
22737ad2antrr 720 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  F : A
--> B )
228 simpr 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( v  i^i  A )  e.  ( ( ( nei `  J
) `  { z } )t  A ) )
229 fgfil 19407 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( nei `  J
) `  { z } )t  A )  e.  ( Fil `  A )  ->  ( A filGen ( ( ( nei `  J
) `  { z } )t  A ) )  =  ( ( ( nei `  J ) `  {
z } )t  A ) )
230199, 229syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  z  e.  C )  ->  ( A filGen ( ( ( nei `  J ) `
 { z } )t  A ) )  =  ( ( ( nei `  J ) `  {
z } )t  A ) )
231230adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( A filGen ( ( ( nei `  J ) `  {
z } )t  A ) )  =  ( ( ( nei `  J
) `  { z } )t  A ) )
232228, 231eleqtrrd 2518 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( v  i^i  A )  e.  ( A filGen ( ( ( nei `  J ) `
 { z } )t  A ) ) )
233 eqid 2441 . . . . . . . . . . . . . . . . . . . 20  |-  ( A
filGen ( ( ( nei `  J ) `  {
z } )t  A ) )  =  ( A
filGen ( ( ( nei `  J ) `  {
z } )t  A ) )
234233imaelfm 19483 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( B  e.  _V  /\  ( ( ( nei `  J ) `  {
z } )t  A )  e.  ( fBas `  A
)  /\  F : A
--> B )  /\  (
v  i^i  A )  e.  ( A filGen ( ( ( nei `  J
) `  { z } )t  A ) ) )  ->  ( F "
( v  i^i  A
) )  e.  ( ( B  FilMap  F ) `
 ( ( ( nei `  J ) `
 { z } )t  A ) ) )
235223, 226, 227, 232, 234syl31anc 1216 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( F " ( v  i^i  A
) )  e.  ( ( B  FilMap  F ) `
 ( ( ( nei `  J ) `
 { z } )t  A ) ) )
236 flimclsi 19510 . . . . . . . . . . . . . . . . . 18  |-  ( ( F " ( v  i^i  A ) )  e.  ( ( B 
FilMap  F ) `  (
( ( nei `  J
) `  { z } )t  A ) )  -> 
( K  fLim  (
( B  FilMap  F ) `
 ( ( ( nei `  J ) `
 { z } )t  A ) ) ) 
C_  ( ( cls `  K ) `  ( F " ( v  i^i 
A ) ) ) )
237235, 236syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( K  fLim  ( ( B  FilMap  F ) `  ( ( ( nei `  J
) `  { z } )t  A ) ) ) 
C_  ( ( cls `  K ) `  ( F " ( v  i^i 
A ) ) ) )
238219, 237eqsstrd 3387 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( ( K  fLimf  ( ( ( nei `  J ) `
 { z } )t  A ) ) `  F )  C_  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
239215, 238eqsstr3d 3388 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  { U. (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) }  C_  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
240 fvex 5698 . . . . . . . . . . . . . . . . 17  |-  ( ( K  fLimf  ( (
( nei `  J
) `  { z } )t  A ) ) `  F )  e.  _V
241240uniex 6375 . . . . . . . . . . . . . . . 16  |-  U. (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  e.  _V
242241snss 3996 . . . . . . . . . . . . . . 15  |-  ( U. ( ( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  e.  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  <->  { U. (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F ) }  C_  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
243239, 242sylibr 212 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  U. (
( K  fLimf  ( ( ( nei `  J
) `  { z } )t  A ) ) `  F )  e.  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
244190, 243eqeltrd 2515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  z  e.  C )  /\  (
v  i^i  A )  e.  ( ( ( nei `  J ) `  {
z } )t  A ) )  ->  ( (
( JCnExt K ) `
 F ) `  z )  e.  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
245174, 180, 188, 244syl21anc 1212 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  v  e.  J )  /\  z  e.  v )  ->  (
( ( JCnExt K
) `  F ) `  z )  e.  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
246245adantlr 709 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  v  e.  J )  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )  /\  z  e.  v )  ->  (
( ( JCnExt K
) `  F ) `  z )  e.  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) ) )
247173, 246sseldd 3354 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  v  e.  J )  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )  /\  z  e.  v )  ->  (
( ( JCnExt K
) `  F ) `  z )  e.  w
)
248247ralrimiva 2797 . . . . . . . . 9  |-  ( ( ( ph  /\  v  e.  J )  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )  ->  A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w
)
249248expl 615 . . . . . . . 8  |-  ( ph  ->  ( ( v  e.  J  /\  ( ( cls `  K ) `
 ( F "
( v  i^i  A
) ) )  C_  w )  ->  A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w
) )
250249reximdv 2825 . . . . . . 7  |-  ( ph  ->  ( E. v  e.  ( ( nei `  J
) `  { x } ) ( v  e.  J  /\  (
( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w
) )
251250ad2antrr 720 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  ( E. v  e.  ( ( nei `  J ) `  { x } ) ( v  e.  J  /\  ( ( cls `  K
) `  ( F " ( v  i^i  A
) ) )  C_  w )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w
) )
252172, 251mpd 15 . . . . 5  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w
)
25365, 46, 4, 32, 37, 69, 84, 94cnextf 19597 . . . . . . . . . 10  |-  ( ph  ->  ( ( JCnExt K
) `  F ) : C --> B )
254 ffun 5558 . . . . . . . . . 10  |-  ( ( ( JCnExt K ) `
 F ) : C --> B  ->  Fun  ( ( JCnExt K
) `  F )
)
255253, 254syl 16 . . . . . . . . 9  |-  ( ph  ->  Fun  ( ( JCnExt
K ) `  F
) )
256255adantr 462 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ( nei `  J
) `  { x } ) )  ->  Fun  ( ( JCnExt K
) `  F )
)
25765neii1 18669 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  v  e.  ( ( nei `  J ) `  { x } ) )  ->  v  C_  C )
2584, 257sylan 468 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ( nei `  J
) `  { x } ) )  -> 
v  C_  C )
259 fdm 5560 . . . . . . . . . . 11  |-  ( ( ( JCnExt K ) `
 F ) : C --> B  ->  dom  ( ( JCnExt K
) `  F )  =  C )
260253, 259syl 16 . . . . . . . . . 10  |-  ( ph  ->  dom  ( ( JCnExt
K ) `  F
)  =  C )
261260adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ( nei `  J
) `  { x } ) )  ->  dom  ( ( JCnExt K
) `  F )  =  C )
262258, 261sseqtr4d 3390 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ( nei `  J
) `  { x } ) )  -> 
v  C_  dom  ( ( JCnExt K ) `  F ) )
263 funimass4 5739 . . . . . . . 8  |-  ( ( Fun  ( ( JCnExt
K ) `  F
)  /\  v  C_  dom  ( ( JCnExt K
) `  F )
)  ->  ( (
( ( JCnExt K
) `  F ) " v )  C_  w 
<-> 
A. z  e.  v  ( ( ( JCnExt
K ) `  F
) `  z )  e.  w ) )
264256, 262, 263syl2anc 656 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ( nei `  J
) `  { x } ) )  -> 
( ( ( ( JCnExt K ) `  F ) " v
)  C_  w  <->  A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w
) )
265264biimprd 223 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ( nei `  J
) `  { x } ) )  -> 
( A. z  e.  v  ( ( ( JCnExt K ) `  F ) `  z
)  e.  w  -> 
( ( ( JCnExt
K ) `  F
) " v ) 
C_  w ) )
266265reximdva 2826 . . . . 5  |-  ( ph  ->  ( E. v  e.  ( ( nei `  J
) `  { x } ) A. z  e.  v  ( (
( JCnExt K ) `
 F ) `  z )  e.  w  ->  E. v  e.  ( ( nei `  J
) `  { x } ) ( ( ( JCnExt K ) `
 F ) "
v )  C_  w
) )
2671, 252, 266sylc 60 . . . 4  |-  ( ( ( ph  /\  x  e.  C )  /\  w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) )  ->  E. v  e.  ( ( nei `  J
) `  { x } ) ( ( ( JCnExt K ) `
 F ) "
v )  C_  w
)
268267ralrimiva 2797 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  A. w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. v  e.  ( ( nei `  J
) `  { x } ) ( ( ( JCnExt K ) `
 F ) "
v )  C_  w
)
269268ralrimiva 2797 . 2  |-  ( ph  ->  A. x  e.  C  A. w  e.  (
( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. v  e.  ( ( nei `  J
) `  { x } ) ( ( ( JCnExt K ) `
 F ) "
v )  C_  w
)
27065, 46cnnei 18845 . . 3  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  (
( JCnExt K ) `
 F ) : C --> B )  -> 
( ( ( JCnExt
K ) `  F
)  e.  ( J  Cn  K )  <->  A. x  e.  C  A. w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. v  e.  ( ( nei `  J
) `  { x } ) ( ( ( JCnExt K ) `
 F ) "
v )  C_  w
) )
2714, 34, 253, 270syl3anc 1213 . 2  |-  ( ph  ->  ( ( ( JCnExt
K ) `  F
)  e.  ( J  Cn  K )  <->  A. x  e.  C  A. w  e.  ( ( nei `  K
) `  { (
( ( JCnExt K
) `  F ) `  x ) } ) E. v  e.  ( ( nei `  J
) `  { x } ) ( ( ( JCnExt K ) `
 F ) "
v )  C_  w
) )
272269, 271mpbird 232 1  |-  ( ph  ->  ( ( JCnExt K
) `  F )  e.  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   _Vcvv 2970    i^i cin 3324    C_ wss 3325   (/)c0 3634   {csn 3874   U.cuni 4088   class class class wbr 4289   dom cdm 4836   ran crn 4837   "cima 4839   Fun wfun 5409   -->wf 5411   ` cfv 5415  (class class class)co 6090   1oc1o 6909    ~~ cen 7303   ↾t crest 14355   fBascfbas 17763   filGencfg 17764   Topctop 18457  TopOnctopon 18458   clsccl 18581   neicnei 18660    Cn ccn 18787   Hauscha 18871   Regcreg 18872   Filcfil 19377    FilMap cfm 19465    fLim cflim 19466    fLimf cflf 19467  CnExtccnext 19590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-1o 6916  df-map 7212  df-pm 7213  df-en 7307  df-rest 14357  df-topgen 14378  df-fbas 17773  df-fg 17774  df-top 18462  df-topon 18465  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-cn 18790  df-cnp 18791  df-haus 18878  df-reg 18879  df-fil 19378  df-fm 19470  df-flim 19471  df-flf 19472  df-cnext 19591
This theorem is referenced by:  cnextucn  19837
  Copyright terms: Public domain W3C validator