MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Unicode version

Theorem cncph 25410
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
Assertion
Ref Expression
cncph  |-  U  e.  CPreHil
OLD

Proof of Theorem cncph
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
2 eqid 2467 . . . 4  |-  <. <.  +  ,  x.  >. ,  abs >.  = 
<. <.  +  ,  x.  >. ,  abs >.
32cnnv 25258 . . 3  |-  <. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec
4 mulm1 9994 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( -u 1  x.  y )  =  -u y )
54adantl 466 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -u 1  x.  y )  =  -u y )
65oveq2d 6298 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  (
-u 1  x.  y
) )  =  ( x  +  -u y
) )
7 negsub 9863 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  -u y )  =  ( x  -  y ) )
86, 7eqtrd 2508 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  (
-u 1  x.  y
) )  =  ( x  -  y ) )
98fveq2d 5868 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  +  ( -u
1  x.  y ) ) )  =  ( abs `  ( x  -  y ) ) )
109oveq1d 6297 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 )  =  ( ( abs `  ( x  -  y ) ) ^ 2 ) )
1110oveq2d 6298 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  ( -u 1  x.  y ) ) ) ^ 2 ) )  =  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  -  y ) ) ^ 2 ) ) )
12 sqabsadd 13074 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  +  y ) ) ^ 2 )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )
13 sqabssub 13075 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) ) ^ 2 )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )
1412, 13oveq12d 6300 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) )  +  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) ) )
15 abscl 13070 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
1615recnd 9618 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( abs `  x )  e.  CC )
1716sqcld 12272 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( abs `  x
) ^ 2 )  e.  CC )
18 abscl 13070 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( abs `  y )  e.  RR )
1918recnd 9618 . . . . . . . . . 10  |-  ( y  e.  CC  ->  ( abs `  y )  e.  CC )
2019sqcld 12272 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
( abs `  y
) ^ 2 )  e.  CC )
21 addcl 9570 . . . . . . . . 9  |-  ( ( ( ( abs `  x
) ^ 2 )  e.  CC  /\  (
( abs `  y
) ^ 2 )  e.  CC )  -> 
( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC )
2217, 20, 21syl2an 477 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC )
23 2cn 10602 . . . . . . . . 9  |-  2  e.  CC
24 cjcl 12897 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
* `  y )  e.  CC )
25 mulcl 9572 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( * `  y
)  e.  CC )  ->  ( x  x.  ( * `  y
) )  e.  CC )
2624, 25sylan2 474 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  (
* `  y )
)  e.  CC )
27 recl 12902 . . . . . . . . . . 11  |-  ( ( x  x.  ( * `
 y ) )  e.  CC  ->  (
Re `  ( x  x.  ( * `  y
) ) )  e.  RR )
2827recnd 9618 . . . . . . . . . 10  |-  ( ( x  x.  ( * `
 y ) )  e.  CC  ->  (
Re `  ( x  x.  ( * `  y
) ) )  e.  CC )
2926, 28syl 16 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( Re `  (
x  x.  ( * `
 y ) ) )  e.  CC )
30 mulcl 9572 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( Re `  ( x  x.  ( * `  y ) ) )  e.  CC )  -> 
( 2  x.  (
Re `  ( x  x.  ( * `  y
) ) ) )  e.  CC )
3123, 29, 30sylancr 663 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( 2  x.  (
Re `  ( x  x.  ( * `  y
) ) ) )  e.  CC )
3222, 31, 22ppncand 9966 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) )  +  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )  =  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) ) ) )
3314, 32eqtrd 2508 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
34 2times 10650 . . . . . . . 8  |-  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC  ->  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3534eqcomd 2475 . . . . . . 7  |-  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC  ->  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3622, 35syl 16 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3733, 36eqtrd 2508 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3811, 37eqtrd 2508 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  ( -u 1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3938rgen2a 2891 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )
40 addex 11214 . . . 4  |-  +  e.  _V
41 mulex 11215 . . . 4  |-  x.  e.  _V
42 absf 13129 . . . . 5  |-  abs : CC
--> RR
43 cnex 9569 . . . . 5  |-  CC  e.  _V
44 fex 6131 . . . . 5  |-  ( ( abs : CC --> RR  /\  CC  e.  _V )  ->  abs  e.  _V )
4542, 43, 44mp2an 672 . . . 4  |-  abs  e.  _V
46 cnaddablo 25028 . . . . . . 7  |-  +  e.  AbelOp
47 ablogrpo 24962 . . . . . . 7  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
4846, 47ax-mp 5 . . . . . 6  |-  +  e.  GrpOp
49 ax-addf 9567 . . . . . . 7  |-  +  :
( CC  X.  CC )
--> CC
5049fdmi 5734 . . . . . 6  |-  dom  +  =  ( CC  X.  CC )
5148, 50grporn 24890 . . . . 5  |-  CC  =  ran  +
5251isphg 25408 . . . 4  |-  ( (  +  e.  _V  /\  x.  e.  _V  /\  abs  e.  _V )  ->  ( <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil OLD  <->  (
<. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec  /\  A. x  e.  CC  A. y  e.  CC  (
( ( abs `  (
x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  (
-u 1  x.  y
) ) ) ^
2 ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) ) ) )
5340, 41, 45, 52mp3an 1324 . . 3  |-  ( <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil OLD  <->  ( <. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) ) )
543, 39, 53mpbir2an 918 . 2  |-  <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil
OLD
551, 54eqeltri 2551 1  |-  U  e.  CPreHil
OLD
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   <.cop 4033    X. cxp 4997   -->wf 5582   ` cfv 5586  (class class class)co 6282   CCcc 9486   RRcr 9487   1c1 9489    + caddc 9491    x. cmul 9493    - cmin 9801   -ucneg 9802   2c2 10581   ^cexp 12130   *ccj 12888   Recre 12889   abscabs 13026   GrpOpcgr 24864   AbelOpcablo 24959   NrmCVeccnv 25153   CPreHil OLDccphlo 25403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-2nd 6782  df-recs 7039  df-rdg 7073  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-rp 11217  df-seq 12072  df-exp 12131  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-grpo 24869  df-gid 24870  df-ablo 24960  df-vc 25115  df-nv 25161  df-ph 25404
This theorem is referenced by:  elimphu  25412  cnchl  25508
  Copyright terms: Public domain W3C validator