MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncph Structured version   Unicode version

Theorem cncph 26134
Description: The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cncph.6  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
Assertion
Ref Expression
cncph  |-  U  e.  CPreHil
OLD

Proof of Theorem cncph
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncph.6 . 2  |-  U  = 
<. <.  +  ,  x.  >. ,  abs >.
2 eqid 2402 . . . 4  |-  <. <.  +  ,  x.  >. ,  abs >.  = 
<. <.  +  ,  x.  >. ,  abs >.
32cnnv 25982 . . 3  |-  <. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec
4 mulm1 10038 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( -u 1  x.  y )  =  -u y )
54adantl 464 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( -u 1  x.  y )  =  -u y )
65oveq2d 6293 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  (
-u 1  x.  y
) )  =  ( x  +  -u y
) )
7 negsub 9902 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  -u y )  =  ( x  -  y ) )
86, 7eqtrd 2443 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  (
-u 1  x.  y
) )  =  ( x  -  y ) )
98fveq2d 5852 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  +  ( -u
1  x.  y ) ) )  =  ( abs `  ( x  -  y ) ) )
109oveq1d 6292 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 )  =  ( ( abs `  ( x  -  y ) ) ^ 2 ) )
1110oveq2d 6293 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  ( -u 1  x.  y ) ) ) ^ 2 ) )  =  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  -  y ) ) ^ 2 ) ) )
12 sqabsadd 13262 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  +  y ) ) ^ 2 )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )
13 sqabssub 13263 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) ) ^ 2 )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )
1412, 13oveq12d 6295 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) )  +  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) ) )
15 abscl 13258 . . . . . . . . . . 11  |-  ( x  e.  CC  ->  ( abs `  x )  e.  RR )
1615recnd 9651 . . . . . . . . . 10  |-  ( x  e.  CC  ->  ( abs `  x )  e.  CC )
1716sqcld 12350 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
( abs `  x
) ^ 2 )  e.  CC )
18 abscl 13258 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  ( abs `  y )  e.  RR )
1918recnd 9651 . . . . . . . . . 10  |-  ( y  e.  CC  ->  ( abs `  y )  e.  CC )
2019sqcld 12350 . . . . . . . . 9  |-  ( y  e.  CC  ->  (
( abs `  y
) ^ 2 )  e.  CC )
21 addcl 9603 . . . . . . . . 9  |-  ( ( ( ( abs `  x
) ^ 2 )  e.  CC  /\  (
( abs `  y
) ^ 2 )  e.  CC )  -> 
( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC )
2217, 20, 21syl2an 475 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC )
23 2cn 10646 . . . . . . . . 9  |-  2  e.  CC
24 cjcl 13085 . . . . . . . . . . 11  |-  ( y  e.  CC  ->  (
* `  y )  e.  CC )
25 mulcl 9605 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( * `  y
)  e.  CC )  ->  ( x  x.  ( * `  y
) )  e.  CC )
2624, 25sylan2 472 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  (
* `  y )
)  e.  CC )
27 recl 13090 . . . . . . . . . . 11  |-  ( ( x  x.  ( * `
 y ) )  e.  CC  ->  (
Re `  ( x  x.  ( * `  y
) ) )  e.  RR )
2827recnd 9651 . . . . . . . . . 10  |-  ( ( x  x.  ( * `
 y ) )  e.  CC  ->  (
Re `  ( x  x.  ( * `  y
) ) )  e.  CC )
2926, 28syl 17 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( Re `  (
x  x.  ( * `
 y ) ) )  e.  CC )
30 mulcl 9605 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  ( Re `  ( x  x.  ( * `  y ) ) )  e.  CC )  -> 
( 2  x.  (
Re `  ( x  x.  ( * `  y
) ) ) )  e.  CC )
3123, 29, 30sylancr 661 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( 2  x.  (
Re `  ( x  x.  ( * `  y
) ) ) )  e.  CC )
3222, 31, 22ppncand 10006 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( 2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) )  +  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  -  (
2  x.  ( Re
`  ( x  x.  ( * `  y
) ) ) ) ) )  =  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) ) ) )
3314, 32eqtrd 2443 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
34 2times 10694 . . . . . . . 8  |-  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC  ->  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3534eqcomd 2410 . . . . . . 7  |-  ( ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) )  e.  CC  ->  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3622, 35syl 17 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y
) ^ 2 ) )  +  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3733, 36eqtrd 2443 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  -  y ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3811, 37eqtrd 2443 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  ( -u 1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x ) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) )
3938rgen2a 2830 . . 3  |-  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) )
40 addex 11262 . . . 4  |-  +  e.  _V
41 mulex 11263 . . . 4  |-  x.  e.  _V
42 absf 13317 . . . . 5  |-  abs : CC
--> RR
43 cnex 9602 . . . . 5  |-  CC  e.  _V
44 fex 6125 . . . . 5  |-  ( ( abs : CC --> RR  /\  CC  e.  _V )  ->  abs  e.  _V )
4542, 43, 44mp2an 670 . . . 4  |-  abs  e.  _V
46 cnaddablo 25752 . . . . . . 7  |-  +  e.  AbelOp
47 ablogrpo 25686 . . . . . . 7  |-  (  +  e.  AbelOp  ->  +  e.  GrpOp )
4846, 47ax-mp 5 . . . . . 6  |-  +  e.  GrpOp
49 ax-addf 9600 . . . . . . 7  |-  +  :
( CC  X.  CC )
--> CC
5049fdmi 5718 . . . . . 6  |-  dom  +  =  ( CC  X.  CC )
5148, 50grporn 25614 . . . . 5  |-  CC  =  ran  +
5251isphg 26132 . . . 4  |-  ( (  +  e.  _V  /\  x.  e.  _V  /\  abs  e.  _V )  ->  ( <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil OLD  <->  (
<. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec  /\  A. x  e.  CC  A. y  e.  CC  (
( ( abs `  (
x  +  y ) ) ^ 2 )  +  ( ( abs `  ( x  +  (
-u 1  x.  y
) ) ) ^
2 ) )  =  ( 2  x.  (
( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) ) ) )
5340, 41, 45, 52mp3an 1326 . . 3  |-  ( <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil OLD  <->  ( <. <.  +  ,  x.  >. ,  abs >.  e.  NrmCVec  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( abs `  ( x  +  y ) ) ^ 2 )  +  ( ( abs `  (
x  +  ( -u
1  x.  y ) ) ) ^ 2 ) )  =  ( 2  x.  ( ( ( abs `  x
) ^ 2 )  +  ( ( abs `  y ) ^ 2 ) ) ) ) )
543, 39, 53mpbir2an 921 . 2  |-  <. <.  +  ,  x.  >. ,  abs >.  e.  CPreHil
OLD
551, 54eqeltri 2486 1  |-  U  e.  CPreHil
OLD
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   _Vcvv 3058   <.cop 3977    X. cxp 4820   -->wf 5564   ` cfv 5568  (class class class)co 6277   CCcc 9519   RRcr 9520   1c1 9522    + caddc 9524    x. cmul 9526    - cmin 9840   -ucneg 9841   2c2 10625   ^cexp 12208   *ccj 13076   Recre 13077   abscabs 13214   GrpOpcgr 25588   AbelOpcablo 25683   NrmCVeccnv 25877   CPreHil OLDccphlo 26127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599  ax-addf 9600  ax-mulf 9601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-sup 7934  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-rp 11265  df-seq 12150  df-exp 12209  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-grpo 25593  df-gid 25594  df-ablo 25684  df-vc 25839  df-nv 25885  df-ph 26128
This theorem is referenced by:  elimphu  26136  cnchl  26232
  Copyright terms: Public domain W3C validator