MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst2 Unicode version

Theorem cnconst2 17301
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )

Proof of Theorem cnconst2
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 5591 . . 3  |-  ( B  e.  Y  ->  ( X  X.  { B }
) : X --> Y )
213ad2ant3 980 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } ) : X --> Y )
32adantr 452 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
) : X --> Y )
4 simpll3 998 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  B  e.  Y )
5 simplr 732 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  x  e.  X )
6 fvconst2g 5904 . . . . . . . 8  |-  ( ( B  e.  Y  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
74, 5, 6syl2anc 643 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( X  X.  { B } ) `  x
)  =  B )
87eleq1d 2470 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  <-> 
B  e.  y ) )
9 simpll1 996 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  J  e.  (TopOn `  X ) )
10 toponmax 16948 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
119, 10syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  X  e.  J )
12 simplr 732 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  x  e.  X )
13 df-ima 4850 . . . . . . . . 9  |-  ( ( X  X.  { B } ) " X
)  =  ran  (
( X  X.  { B } )  |`  X )
14 ssid 3327 . . . . . . . . . . . . 13  |-  X  C_  X
15 xpssres 5139 . . . . . . . . . . . . 13  |-  ( X 
C_  X  ->  (
( X  X.  { B } )  |`  X )  =  ( X  X.  { B } ) )
1614, 15ax-mp 8 . . . . . . . . . . . 12  |-  ( ( X  X.  { B } )  |`  X )  =  ( X  X.  { B } )
1716rneqi 5055 . . . . . . . . . . 11  |-  ran  (
( X  X.  { B } )  |`  X )  =  ran  ( X  X.  { B }
)
18 rnxpss 5260 . . . . . . . . . . 11  |-  ran  ( X  X.  { B }
)  C_  { B }
1917, 18eqsstri 3338 . . . . . . . . . 10  |-  ran  (
( X  X.  { B } )  |`  X ) 
C_  { B }
20 simprr 734 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  B  e.  y )
2120snssd 3903 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  { B }  C_  y )
2219, 21syl5ss 3319 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ran  ( ( X  X.  { B } )  |`  X ) 
C_  y )
2313, 22syl5eqss 3352 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ( ( X  X.  { B }
) " X ) 
C_  y )
24 eleq2 2465 . . . . . . . . . 10  |-  ( u  =  X  ->  (
x  e.  u  <->  x  e.  X ) )
25 imaeq2 5158 . . . . . . . . . . 11  |-  ( u  =  X  ->  (
( X  X.  { B } ) " u
)  =  ( ( X  X.  { B } ) " X
) )
2625sseq1d 3335 . . . . . . . . . 10  |-  ( u  =  X  ->  (
( ( X  X.  { B } ) "
u )  C_  y  <->  ( ( X  X.  { B } ) " X
)  C_  y )
)
2724, 26anbi12d 692 . . . . . . . . 9  |-  ( u  =  X  ->  (
( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
)  <->  ( x  e.  X  /\  ( ( X  X.  { B } ) " X
)  C_  y )
) )
2827rspcev 3012 . . . . . . . 8  |-  ( ( X  e.  J  /\  ( x  e.  X  /\  ( ( X  X.  { B } ) " X )  C_  y
) )  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
2911, 12, 23, 28syl12anc 1182 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
3029expr 599 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  ( B  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
318, 30sylbid 207 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
3231ralrimiva 2749 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  A. y  e.  K  ( (
( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
33 simpl1 960 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  J  e.  (TopOn `  X )
)
34 simpl2 961 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  K  e.  (TopOn `  Y )
)
35 simpr 448 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  x  e.  X )
36 iscnp 17255 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  x  e.  X
)  ->  ( ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
3733, 34, 35, 36syl3anc 1184 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  (
( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )  <->  ( ( X  X.  { B } ) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
383, 32, 37mpbir2and 889 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x ) )
3938ralrimiva 2749 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K ) `  x ) )
40 cncnp 17298 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
41403adant3 977 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
422, 39, 41mpbir2and 889 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   {csn 3774    X. cxp 4835   ran crn 4838    |` cres 4839   "cima 4840   -->wf 5409   ` cfv 5413  (class class class)co 6040  TopOnctopon 16914    Cn ccn 17242    CnP ccnp 17243
This theorem is referenced by:  cnconst  17302  xkoccn  17604  txkgen  17637  cnmptc  17647  pcoptcl  18999  blocni  22259  conpcon  24875  cvmliftphtlem  24957  cvmlift3lem9  24967  stoweidlem47  27663
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-map 6979  df-topgen 13622  df-top 16918  df-topon 16921  df-cn 17245  df-cnp 17246
  Copyright terms: Public domain W3C validator