MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconn Structured version   Unicode version

Theorem cnconn 20215
Description: Connectedness is respected by a continuous onto map. (Contributed by Jeff Hankins, 12-Jul-2009.) (Proof shortened by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
cnconn.2  |-  Y  = 
U. K
Assertion
Ref Expression
cnconn  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  ->  K  e.  Con )

Proof of Theorem cnconn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cntop2 20035 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
213ad2ant3 1020 . 2  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  ->  K  e.  Top )
3 df-ne 2600 . . . . . . 7  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
4 eqid 2402 . . . . . . . . . . . 12  |-  U. J  =  U. J
5 simpl1 1000 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  J  e.  Con )
6 simpl3 1002 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  F  e.  ( J  Cn  K ) )
7 inss1 3659 . . . . . . . . . . . . . 14  |-  ( K  i^i  ( Clsd `  K
) )  C_  K
8 simprl 756 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  e.  ( K  i^i  ( Clsd `  K ) ) )
97, 8sseldi 3440 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  e.  K
)
10 cnima 20059 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
116, 9, 10syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  e.  J
)
12 elssuni 4220 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  K  ->  x  C_ 
U. K )
139, 12syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  U. K
)
14 cnconn.2 . . . . . . . . . . . . . . . . . 18  |-  Y  = 
U. K
1513, 14syl6sseqr 3489 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  Y
)
16 simpl2 1001 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  F : X -onto-> Y )
17 forn 5781 . . . . . . . . . . . . . . . . . 18  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
1816, 17syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ran  F  =  Y )
1915, 18sseqtr4d 3479 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  ran  F )
20 df-rn 4834 . . . . . . . . . . . . . . . 16  |-  ran  F  =  dom  `' F
2119, 20syl6sseq 3488 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  C_  dom  `' F )
22 dfss1 3644 . . . . . . . . . . . . . . 15  |-  ( x 
C_  dom  `' F  <->  ( dom  `' F  i^i  x )  =  x )
2321, 22sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( dom  `' F  i^i  x )  =  x )
24 simprr 758 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  =/=  (/) )
2523, 24eqnetrd 2696 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( dom  `' F  i^i  x )  =/=  (/) )
26 imadisj 5176 . . . . . . . . . . . . . 14  |-  ( ( `' F " x )  =  (/)  <->  ( dom  `' F  i^i  x )  =  (/) )
2726necon3bii 2671 . . . . . . . . . . . . 13  |-  ( ( `' F " x )  =/=  (/)  <->  ( dom  `' F  i^i  x )  =/=  (/) )
2825, 27sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  =/=  (/) )
29 inss2 3660 . . . . . . . . . . . . . 14  |-  ( K  i^i  ( Clsd `  K
) )  C_  ( Clsd `  K )
3029, 8sseldi 3440 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  e.  (
Clsd `  K )
)
31 cnclima 20062 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  ( Clsd `  K ) )  -> 
( `' F "
x )  e.  (
Clsd `  J )
)
326, 30, 31syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  e.  (
Clsd `  J )
)
334, 5, 11, 28, 32conclo 20208 . . . . . . . . . . 11  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  =  U. J )
344, 14cnf 20040 . . . . . . . . . . . 12  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
35 fdm 5718 . . . . . . . . . . . 12  |-  ( F : U. J --> Y  ->  dom  F  =  U. J
)
366, 34, 353syl 18 . . . . . . . . . . 11  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  dom  F  =  U. J )
37 fof 5778 . . . . . . . . . . . 12  |-  ( F : X -onto-> Y  ->  F : X --> Y )
38 fdm 5718 . . . . . . . . . . . 12  |-  ( F : X --> Y  ->  dom  F  =  X )
3916, 37, 383syl 18 . . . . . . . . . . 11  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  dom  F  =  X )
4033, 36, 393eqtr2d 2449 . . . . . . . . . 10  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( `' F " x )  =  X )
4140imaeq2d 5157 . . . . . . . . 9  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( F "
( `' F "
x ) )  =  ( F " X
) )
42 foimacnv 5816 . . . . . . . . . 10  |-  ( ( F : X -onto-> Y  /\  x  C_  Y )  ->  ( F "
( `' F "
x ) )  =  x )
4316, 15, 42syl2anc 659 . . . . . . . . 9  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( F "
( `' F "
x ) )  =  x )
44 foima 5783 . . . . . . . . . 10  |-  ( F : X -onto-> Y  -> 
( F " X
)  =  Y )
4516, 44syl 17 . . . . . . . . 9  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  ( F " X )  =  Y )
4641, 43, 453eqtr3d 2451 . . . . . . . 8  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  ( x  e.  ( K  i^i  ( Clsd `  K ) )  /\  x  =/=  (/) ) )  ->  x  =  Y )
4746expr 613 . . . . . . 7  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  ( x  =/=  (/)  ->  x  =  Y ) )
483, 47syl5bir 218 . . . . . 6  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  ( -.  x  =  (/)  ->  x  =  Y ) )
4948orrd 376 . . . . 5  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  ( x  =  (/)  \/  x  =  Y ) )
50 vex 3062 . . . . . 6  |-  x  e. 
_V
5150elpr 3990 . . . . 5  |-  ( x  e.  { (/) ,  Y } 
<->  ( x  =  (/)  \/  x  =  Y ) )
5249, 51sylibr 212 . . . 4  |-  ( ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  /\  x  e.  ( K  i^i  ( Clsd `  K ) ) )  ->  x  e.  { (/)
,  Y } )
5352ex 432 . . 3  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  -> 
( x  e.  ( K  i^i  ( Clsd `  K ) )  ->  x  e.  { (/) ,  Y } ) )
5453ssrdv 3448 . 2  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  -> 
( K  i^i  ( Clsd `  K ) ) 
C_  { (/) ,  Y } )
5514iscon2 20207 . 2  |-  ( K  e.  Con  <->  ( K  e.  Top  /\  ( K  i^i  ( Clsd `  K
) )  C_  { (/) ,  Y } ) )
562, 54, 55sylanbrc 662 1  |-  ( ( J  e.  Con  /\  F : X -onto-> Y  /\  F  e.  ( J  Cn  K ) )  ->  K  e.  Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598    i^i cin 3413    C_ wss 3414   (/)c0 3738   {cpr 3974   U.cuni 4191   `'ccnv 4822   dom cdm 4823   ran crn 4824   "cima 4826   -->wf 5565   -onto->wfo 5567   ` cfv 5569  (class class class)co 6278   Topctop 19686   Clsdccld 19809    Cn ccn 20018   Conccon 20204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-fo 5575  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-map 7459  df-top 19691  df-topon 19694  df-cld 19812  df-cn 20021  df-con 20205
This theorem is referenced by:  conima  20218  concn  20219  qtopcon  20502  conhmph  20582  ivthALT  30563
  Copyright terms: Public domain W3C validator