MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp2 Structured version   Unicode version

Theorem cncnp2 20077
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cncnp.1  |-  X  = 
U. J
cncnp.2  |-  Y  = 
U. K
Assertion
Ref Expression
cncnp2  |-  ( X  =/=  (/)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cncnp2
StepHypRef Expression
1 cntop1 20036 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cncnp.1 . . . . . 6  |-  X  = 
U. J
32toptopon 19728 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
41, 3sylib 198 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
5 cntop2 20037 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
6 cncnp.2 . . . . . 6  |-  Y  = 
U. K
76toptopon 19728 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
85, 7sylib 198 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
92, 6cnf 20042 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
104, 8, 9jca31 534 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1110adantl 466 . 2  |-  ( ( X  =/=  (/)  /\  F  e.  ( J  Cn  K
) )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
12 r19.2z 3864 . . 3  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
13 cnptop1 20038 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  J  e.  Top )
1413, 3sylib 198 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  J  e.  (TopOn `  X )
)
15 cnptop2 20039 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  K  e.  Top )
1615, 7sylib 198 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  K  e.  (TopOn `  Y )
)
172, 6cnpf 20043 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y )
1814, 16, 17jca31 534 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1918rexlimivw 2895 . . 3  |-  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
2012, 19syl 17 . 2  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
21 cncnp 20076 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
2221baibd 912 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
2311, 20, 22pm5.21nd 903 1  |-  ( X  =/=  (/)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756   E.wrex 2757   (/)c0 3740   U.cuni 4193   -->wf 5567   ` cfv 5571  (class class class)co 6280   Topctop 19688  TopOnctopon 19689    Cn ccn 20020    CnP ccnp 20021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-iun 4275  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-1st 6786  df-2nd 6787  df-map 7461  df-topgen 15060  df-top 19693  df-topon 19696  df-cn 20023  df-cnp 20024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator