MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp2 Structured version   Visualization version   Unicode version

Theorem cncnp2 20374
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
cncnp.1  |-  X  = 
U. J
cncnp.2  |-  Y  = 
U. K
Assertion
Ref Expression
cncnp2  |-  ( X  =/=  (/)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cncnp2
StepHypRef Expression
1 cntop1 20333 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
2 cncnp.1 . . . . . 6  |-  X  = 
U. J
32toptopon 20025 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
41, 3sylib 201 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  (TopOn `  X )
)
5 cntop2 20334 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
6 cncnp.2 . . . . . 6  |-  Y  = 
U. K
76toptopon 20025 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
85, 7sylib 201 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  (TopOn `  Y )
)
92, 6cnf 20339 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : X --> Y )
104, 8, 9jca31 543 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1110adantl 473 . 2  |-  ( ( X  =/=  (/)  /\  F  e.  ( J  Cn  K
) )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
12 r19.2z 3849 . . 3  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
13 cnptop1 20335 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  J  e.  Top )
1413, 3sylib 201 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  J  e.  (TopOn `  X )
)
15 cnptop2 20336 . . . . . 6  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  K  e.  Top )
1615, 7sylib 201 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  K  e.  (TopOn `  Y )
)
172, 6cnpf 20340 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  F : X --> Y )
1814, 16, 17jca31 543 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  x )  ->  (
( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y ) )
1918rexlimivw 2869 . . 3  |-  ( E. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
2012, 19syl 17 . 2  |-  ( ( X  =/=  (/)  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )  ->  ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  F : X --> Y ) )
21 cncnp 20373 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
2221baibd 923 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F : X
--> Y )  ->  ( F  e.  ( J  Cn  K )  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
2311, 20, 22pm5.21nd 916 1  |-  ( X  =/=  (/)  ->  ( F  e.  ( J  Cn  K
)  <->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   (/)c0 3722   U.cuni 4190   -->wf 5585   ` cfv 5589  (class class class)co 6308   Topctop 19994  TopOnctopon 19995    Cn ccn 20317    CnP ccnp 20318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-map 7492  df-topgen 15420  df-top 19998  df-topon 20000  df-cn 20320  df-cnp 20321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator