MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncnp Structured version   Unicode version

Theorem cncnp 19948
Description: A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cncnp  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
Distinct variable groups:    x, F    x, J    x, K    x, X    x, Y

Proof of Theorem cncnp
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscn 19903 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
21simprbda 621 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  F : X --> Y )
3 eqid 2454 . . . . . . 7  |-  U. J  =  U. J
43cncnpi 19946 . . . . . 6  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  U. J )  ->  F  e.  ( ( J  CnP  K
) `  x )
)
54ralrimiva 2868 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) )
65adantl 464 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) )
7 toponuni 19595 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
87ad2antrr 723 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  X  =  U. J )
98raleqdv 3057 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  <->  A. x  e.  U. J F  e.  ( ( J  CnP  K ) `  x ) ) )
106, 9mpbird 232 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) )
112, 10jca 530 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )
12 simprl 754 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  F : X --> Y )
13 cnvimass 5345 . . . . . . . . . 10  |-  ( `' F " y ) 
C_  dom  F
14 fdm 5717 . . . . . . . . . . 11  |-  ( F : X --> Y  ->  dom  F  =  X )
1514adantl 464 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  dom  F  =  X )
1613, 15syl5sseq 3537 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( `' F " y )  C_  X
)
17 ssralv 3550 . . . . . . . . 9  |-  ( ( `' F " y ) 
C_  X  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F "
y ) F  e.  ( ( J  CnP  K ) `  x ) ) )
1816, 17syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) F  e.  ( ( J  CnP  K ) `
 x ) ) )
19 simprr 755 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  F  e.  ( ( J  CnP  K ) `  x ) )
20 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  y  e.  K )
21 ffn 5713 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  F  Fn  X )
2221ad2antlr 724 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  F  Fn  X )
23 simprl 754 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  x  e.  ( `' F "
y ) )
24 elpreima 5983 . . . . . . . . . . . . . 14  |-  ( F  Fn  X  ->  (
x  e.  ( `' F " y )  <-> 
( x  e.  X  /\  ( F `  x
)  e.  y ) ) )
2524simplbda 622 . . . . . . . . . . . . 13  |-  ( ( F  Fn  X  /\  x  e.  ( `' F " y ) )  ->  ( F `  x )  e.  y )
2622, 23, 25syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  ( F `  x )  e.  y )
27 cnpimaex 19924 . . . . . . . . . . . 12  |-  ( ( F  e.  ( ( J  CnP  K ) `
 x )  /\  y  e.  K  /\  ( F `  x )  e.  y )  ->  E. u  e.  J  ( x  e.  u  /\  ( F " u
)  C_  y )
)
2819, 20, 26, 27syl3anc 1226 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  E. u  e.  J  ( x  e.  u  /\  ( F " u )  C_  y ) )
29 simpllr 758 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  F : X --> Y )
30 ffun 5715 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  Fun  F )
3129, 30syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  Fun  F )
32 simp-4l 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  J  e.  (TopOn `  X )
)
33 toponss 19597 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  (TopOn `  X )  /\  u  e.  J )  ->  u  C_  X )
3432, 33sylan 469 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  u  C_  X )
3529, 14syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  dom  F  =  X )
3634, 35sseqtr4d 3526 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  u  C_ 
dom  F )
37 funimass3 5979 . . . . . . . . . . . . . 14  |-  ( ( Fun  F  /\  u  C_ 
dom  F )  -> 
( ( F "
u )  C_  y  <->  u 
C_  ( `' F " y ) ) )
3831, 36, 37syl2anc 659 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  (
( F " u
)  C_  y  <->  u  C_  ( `' F " y ) ) )
3938anbi2d 701 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  y  e.  K )  /\  F : X --> Y )  /\  ( x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  /\  u  e.  J )  ->  (
( x  e.  u  /\  ( F " u
)  C_  y )  <->  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4039rexbidva 2962 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  ( E. u  e.  J  ( x  e.  u  /\  ( F " u
)  C_  y )  <->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4128, 40mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  (
x  e.  ( `' F " y )  /\  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
4241expr 613 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K
)  /\  F : X
--> Y )  /\  x  e.  ( `' F "
y ) )  -> 
( F  e.  ( ( J  CnP  K
) `  x )  ->  E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4342ralimdva 2862 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  ( `' F "
y ) F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4418, 43syld 44 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  F : X --> Y )  ->  ( A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x )  ->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
4544impr 617 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  y  e.  K )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K
) `  x )
) )  ->  A. x  e.  ( `' F "
y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
4645an32s 802 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  A. x  e.  ( `' F "
y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F "
y ) ) )
47 topontop 19594 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
4847ad3antrrr 727 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  J  e.  Top )
49 eltop2 19644 . . . . . 6  |-  ( J  e.  Top  ->  (
( `' F "
y )  e.  J  <->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
5048, 49syl 16 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  (
( `' F "
y )  e.  J  <->  A. x  e.  ( `' F " y ) E. u  e.  J  ( x  e.  u  /\  u  C_  ( `' F " y ) ) ) )
5146, 50mpbird 232 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y ) )  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  /\  y  e.  K )  ->  ( `' F " y )  e.  J )
5251ralrimiva 2868 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  A. y  e.  K  ( `' F " y )  e.  J )
531adantr 463 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  ( F  e.  ( J  Cn  K )  <->  ( F : X --> Y  /\  A. y  e.  K  ( `' F " y )  e.  J ) ) )
5412, 52, 53mpbir2and 920 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( F : X --> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) )  ->  F  e.  ( J  Cn  K
) )
5511, 54impbida 830 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( F  e.  ( J  Cn  K
)  <->  ( F : X
--> Y  /\  A. x  e.  X  F  e.  ( ( J  CnP  K ) `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805    C_ wss 3461   U.cuni 4235   `'ccnv 4987   dom cdm 4988   "cima 4991   Fun wfun 5564    Fn wfn 5565   -->wf 5566   ` cfv 5570  (class class class)co 6270   Topctop 19561  TopOnctopon 19562    Cn ccn 19892    CnP ccnp 19893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-1st 6773  df-2nd 6774  df-map 7414  df-topgen 14933  df-top 19566  df-topon 19569  df-cn 19895  df-cnp 19896
This theorem is referenced by:  cncnp2  19949  cnnei  19950  cnconst2  19951  1stccn  20130  ptcn  20294  cnflf  20669  cnfcf  20709  symgtgp  20766  ghmcnp  20779  metcn  21212  txmetcn  21217  cnlimc  22458  dvcn  22490  dvcnvre  22586  psercn  22987  abelth  23002  cxpcn3  23290  cvmlift2lem11  29022  cvmlift2lem12  29023  cvmlift3lem8  29035  ioccncflimc  31927  cncfuni  31928  icccncfext  31929  icocncflimc  31931  cncfiooicclem1  31935  dirkercncflem2  32125  dirkercncflem4  32127  dirkercncf  32128  fourierdlem32  32160  fourierdlem33  32161  fourierdlem62  32190  fourierdlem93  32221  fourierdlem101  32229
  Copyright terms: Public domain W3C validator