Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncmpmax Structured version   Unicode version

Theorem cncmpmax 29752
Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
cncmpmax.1  |-  T  = 
U. J
cncmpmax.2  |-  K  =  ( topGen `  ran  (,) )
cncmpmax.3  |-  ( ph  ->  J  e.  Comp )
cncmpmax.4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
cncmpmax.5  |-  ( ph  ->  T  =/=  (/) )
Assertion
Ref Expression
cncmpmax  |-  ( ph  ->  ( sup ( ran 
F ,  RR ,  <  )  e.  ran  F  /\  sup ( ran  F ,  RR ,  <  )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  sup ( ran  F ,  RR ,  <  ) ) )
Distinct variable groups:    t, F    t, T    ph, t    t, J   
t, K

Proof of Theorem cncmpmax
Dummy variables  s  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncmpmax.1 . . 3  |-  T  = 
U. J
2 cncmpmax.2 . . 3  |-  K  =  ( topGen `  ran  (,) )
3 cncmpmax.3 . . 3  |-  ( ph  ->  J  e.  Comp )
4 cncmpmax.4 . . 3  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
5 cncmpmax.5 . . 3  |-  ( ph  ->  T  =/=  (/) )
61, 2, 3, 4, 5evth 20530 . 2  |-  ( ph  ->  E. x  e.  T  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )
7 eqid 2442 . . . . . . . . 9  |-  ( J  Cn  K )  =  ( J  Cn  K
)
82, 1, 7, 4fcnre 29745 . . . . . . . 8  |-  ( ph  ->  F : T --> RR )
9 frn 5564 . . . . . . . 8  |-  ( F : T --> RR  ->  ran 
F  C_  RR )
108, 9syl 16 . . . . . . 7  |-  ( ph  ->  ran  F  C_  RR )
1110adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  ran  F 
C_  RR )
12 ffun 5560 . . . . . . . . . 10  |-  ( F : T --> RR  ->  Fun 
F )
138, 12syl 16 . . . . . . . . 9  |-  ( ph  ->  Fun  F )
1413adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  Fun  F )
15 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  T )  ->  x  e.  T )
168adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  T )  ->  F : T --> RR )
17 fdm 5562 . . . . . . . . . 10  |-  ( F : T --> RR  ->  dom 
F  =  T )
1816, 17syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  T )  ->  dom  F  =  T )
1915, 18eleqtrrd 2519 . . . . . . . 8  |-  ( (
ph  /\  x  e.  T )  ->  x  e.  dom  F )
20 fvelrn 5838 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  ran  F
)
2114, 19, 20syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  T )  ->  ( F `  x )  e.  ran  F )
2221adantrr 716 . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  ( F `  x )  e.  ran  F )
23 ffn 5558 . . . . . . . . . . . . 13  |-  ( F : T --> RR  ->  F  Fn  T )
24 fvelrnb 5738 . . . . . . . . . . . . 13  |-  ( F  Fn  T  ->  (
y  e.  ran  F  <->  E. s  e.  T  ( F `  s )  =  y ) )
258, 23, 243syl 20 . . . . . . . . . . . 12  |-  ( ph  ->  ( y  e.  ran  F  <->  E. s  e.  T  ( F `  s )  =  y ) )
2625biimpa 484 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ran  F )  ->  E. s  e.  T  ( F `  s )  =  y )
27 df-rex 2720 . . . . . . . . . . 11  |-  ( E. s  e.  T  ( F `  s )  =  y  <->  E. s
( s  e.  T  /\  ( F `  s
)  =  y ) )
2826, 27sylib 196 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ran  F )  ->  E. s
( s  e.  T  /\  ( F `  s
)  =  y ) )
2928adantlr 714 . . . . . . . . 9  |-  ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x
) )  /\  y  e.  ran  F )  ->  E. s ( s  e.  T  /\  ( F `
 s )  =  y ) )
30 simprr 756 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )  /\  y  e.  ran  F )  /\  ( s  e.  T  /\  ( F `
 s )  =  y ) )  -> 
( F `  s
)  =  y )
31 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )  /\  y  e.  ran  F )  /\  ( s  e.  T  /\  ( F `
 s )  =  y ) )  ->  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )
32 simprl 755 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )  /\  y  e.  ran  F )  /\  ( s  e.  T  /\  ( F `
 s )  =  y ) )  -> 
s  e.  T )
33 fveq2 5690 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  ( F `  t )  =  ( F `  s ) )
3433breq1d 4301 . . . . . . . . . . . 12  |-  ( t  =  s  ->  (
( F `  t
)  <_  ( F `  x )  <->  ( F `  s )  <_  ( F `  x )
) )
3534rspccva 3071 . . . . . . . . . . 11  |-  ( ( A. t  e.  T  ( F `  t )  <_  ( F `  x )  /\  s  e.  T )  ->  ( F `  s )  <_  ( F `  x
) )
3631, 32, 35syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )  /\  y  e.  ran  F )  /\  ( s  e.  T  /\  ( F `
 s )  =  y ) )  -> 
( F `  s
)  <_  ( F `  x ) )
3730, 36eqbrtrrd 4313 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) )  /\  y  e.  ran  F )  /\  ( s  e.  T  /\  ( F `
 s )  =  y ) )  -> 
y  <_  ( F `  x ) )
3829, 37exlimddv 1692 . . . . . . . 8  |-  ( ( ( ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x
) )  /\  y  e.  ran  F )  -> 
y  <_  ( F `  x ) )
3938ralrimiva 2798 . . . . . . 7  |-  ( (
ph  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
)  ->  A. y  e.  ran  F  y  <_ 
( F `  x
) )
4039adantrl 715 . . . . . 6  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  A. y  e.  ran  F  y  <_ 
( F `  x
) )
41 ubelsupr 29740 . . . . . 6  |-  ( ( ran  F  C_  RR  /\  ( F `  x
)  e.  ran  F  /\  A. y  e.  ran  F  y  <_  ( F `  x ) )  -> 
( F `  x
)  =  sup ( ran  F ,  RR ,  <  ) )
4211, 22, 40, 41syl3anc 1218 . . . . 5  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  ( F `  x )  =  sup ( ran  F ,  RR ,  <  )
)
4342eqcomd 2447 . . . 4  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  sup ( ran  F ,  RR ,  <  )  =  ( F `  x ) )
4443, 22eqeltrd 2516 . . 3  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  sup ( ran  F ,  RR ,  <  )  e.  ran  F )
4511, 44sseldd 3356 . . 3  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  sup ( ran  F ,  RR ,  <  )  e.  RR )
46 simplrr 760 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) ) )  /\  s  e.  T
)  ->  A. t  e.  T  ( F `  t )  <_  ( F `  x )
)
4746, 35sylancom 667 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) ) )  /\  s  e.  T
)  ->  ( F `  s )  <_  ( F `  x )
)
4843adantr 465 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) ) )  /\  s  e.  T
)  ->  sup ( ran  F ,  RR ,  <  )  =  ( F `
 x ) )
4947, 48breqtrrd 4317 . . . . 5  |-  ( ( ( ph  /\  (
x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x ) ) )  /\  s  e.  T
)  ->  ( F `  s )  <_  sup ( ran  F ,  RR ,  <  ) )
5049ralrimiva 2798 . . . 4  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  A. s  e.  T  ( F `  s )  <_  sup ( ran  F ,  RR ,  <  ) )
5133breq1d 4301 . . . . 5  |-  ( t  =  s  ->  (
( F `  t
)  <_  sup ( ran  F ,  RR ,  <  )  <->  ( F `  s )  <_  sup ( ran  F ,  RR ,  <  ) ) )
5251cbvralv 2946 . . . 4  |-  ( A. t  e.  T  ( F `  t )  <_  sup ( ran  F ,  RR ,  <  )  <->  A. s  e.  T  ( F `  s )  <_  sup ( ran  F ,  RR ,  <  )
)
5350, 52sylibr 212 . . 3  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  A. t  e.  T  ( F `  t )  <_  sup ( ran  F ,  RR ,  <  ) )
5444, 45, 533jca 1168 . 2  |-  ( (
ph  /\  ( x  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  x )
) )  ->  ( sup ( ran  F ,  RR ,  <  )  e. 
ran  F  /\  sup ( ran  F ,  RR ,  <  )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  sup ( ran  F ,  RR ,  <  )
) )
556, 54rexlimddv 2844 1  |-  ( ph  ->  ( sup ( ran 
F ,  RR ,  <  )  e.  ran  F  /\  sup ( ran  F ,  RR ,  <  )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  sup ( ran  F ,  RR ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2605   A.wral 2714   E.wrex 2715    C_ wss 3327   (/)c0 3636   U.cuni 4090   class class class wbr 4291   dom cdm 4839   ran crn 4840   Fun wfun 5411    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6090   supcsup 7689   RRcr 9280    < clt 9417    <_ cle 9418   (,)cioo 11299   topGenctg 14375    Cn ccn 18827   Compccmp 18988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-inf2 7846  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-pre-sup 9359  ax-mulf 9361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-se 4679  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-isom 5426  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-supp 6690  df-recs 6831  df-rdg 6865  df-1o 6919  df-2o 6920  df-oadd 6923  df-er 7100  df-map 7215  df-ixp 7263  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-fsupp 7620  df-fi 7660  df-sup 7690  df-oi 7723  df-card 8108  df-cda 8336  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-div 9993  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-7 10384  df-8 10385  df-9 10386  df-10 10387  df-n0 10579  df-z 10646  df-dec 10755  df-uz 10861  df-q 10953  df-rp 10991  df-xneg 11088  df-xadd 11089  df-xmul 11090  df-ioo 11303  df-icc 11306  df-fz 11437  df-fzo 11548  df-seq 11806  df-exp 11865  df-hash 12103  df-cj 12587  df-re 12588  df-im 12589  df-sqr 12723  df-abs 12724  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-starv 14252  df-sca 14253  df-vsca 14254  df-ip 14255  df-tset 14256  df-ple 14257  df-ds 14259  df-unif 14260  df-hom 14261  df-cco 14262  df-rest 14360  df-topn 14361  df-0g 14379  df-gsum 14380  df-topgen 14381  df-pt 14382  df-prds 14385  df-xrs 14439  df-qtop 14444  df-imas 14445  df-xps 14447  df-mre 14523  df-mrc 14524  df-acs 14526  df-mnd 15414  df-submnd 15464  df-mulg 15547  df-cntz 15834  df-cmn 16278  df-psmet 17808  df-xmet 17809  df-met 17810  df-bl 17811  df-mopn 17812  df-cnfld 17818  df-top 18502  df-bases 18504  df-topon 18505  df-topsp 18506  df-cn 18830  df-cnp 18831  df-cmp 18989  df-tx 19134  df-hmeo 19327  df-xms 19894  df-ms 19895  df-tms 19896
This theorem is referenced by:  stoweidlem36  29829
  Copyright terms: Public domain W3C validator