MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfval Structured version   Unicode version

Theorem cncfval 21682
Description: The value of the continuous complex function operation is the set of continuous functions from  A to  B. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
Assertion
Ref Expression
cncfval  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
Distinct variable groups:    w, f, x, y, z, A    B, f, w, x, y, z

Proof of Theorem cncfval
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 9602 . . 3  |-  CC  e.  _V
21elpw2 4557 . 2  |-  ( A  e.  ~P CC  <->  A  C_  CC )
31elpw2 4557 . 2  |-  ( B  e.  ~P CC  <->  B  C_  CC )
4 oveq2 6285 . . . 4  |-  ( a  =  A  ->  (
b  ^m  a )  =  ( b  ^m  A ) )
5 raleq 3003 . . . . . . 7  |-  ( a  =  A  ->  ( A. w  e.  a 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
65rexbidv 2917 . . . . . 6  |-  ( a  =  A  ->  ( E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w ) )  < 
z  ->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
76ralbidv 2842 . . . . 5  |-  ( a  =  A  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
87raleqbi1dv 3011 . . . 4  |-  ( a  =  A  ->  ( A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
94, 8rabeqbidv 3053 . . 3  |-  ( a  =  A  ->  { f  e.  ( b  ^m  a )  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
10 oveq1 6284 . . . 4  |-  ( b  =  B  ->  (
b  ^m  A )  =  ( B  ^m  A ) )
11 rabeq 3052 . . . 4  |-  ( ( b  ^m  A )  =  ( B  ^m  A )  ->  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
1210, 11syl 17 . . 3  |-  ( b  =  B  ->  { f  e.  ( b  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
13 df-cncf 21672 . . 3  |-  -cn->  =  ( a  e.  ~P CC ,  b  e.  ~P CC  |->  { f  e.  ( b  ^m  a
)  |  A. x  e.  a  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  a  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
14 ovex 6305 . . . 4  |-  ( B  ^m  A )  e. 
_V
1514rabex 4544 . . 3  |-  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) }  e.  _V
169, 12, 13, 15ovmpt2 6418 . 2  |-  ( ( A  e.  ~P CC  /\  B  e.  ~P CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
172, 3, 16syl2anbr 478 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  { f  e.  ( B  ^m  A )  |  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754   {crab 2757    C_ wss 3413   ~Pcpw 3954   class class class wbr 4394   ` cfv 5568  (class class class)co 6277    ^m cmap 7456   CCcc 9519    < clt 9657    - cmin 9840   RR+crp 11264   abscabs 13214   -cn->ccncf 21670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pr 4629  ax-cnex 9577
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-iota 5532  df-fun 5570  df-fv 5576  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-cncf 21672
This theorem is referenced by:  elcncf  21683
  Copyright terms: Public domain W3C validator