MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt2f Structured version   Unicode version

Theorem cncfmpt2f 20331
Description: Composition of continuous functions.  -cn-> analog of cnmpt12f 19080. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt2f.1  |-  J  =  ( TopOpen ` fld )
cncfmpt2f.2  |-  ( ph  ->  F  e.  ( ( J  tX  J )  Cn  J ) )
cncfmpt2f.3  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
cncfmpt2f.4  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
cncfmpt2f  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, F    x, J    ph, x    x, X
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem cncfmpt2f
StepHypRef Expression
1 cncfmpt2f.1 . . . . 5  |-  J  =  ( TopOpen ` fld )
21cnfldtopon 20203 . . . 4  |-  J  e.  (TopOn `  CC )
3 cncfmpt2f.3 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
4 cncfrss 20308 . . . . 5  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  X  C_  CC )
53, 4syl 16 . . . 4  |-  ( ph  ->  X  C_  CC )
6 resttopon 18606 . . . 4  |-  ( ( J  e.  (TopOn `  CC )  /\  X  C_  CC )  ->  ( Jt  X )  e.  (TopOn `  X ) )
72, 5, 6sylancr 656 . . 3  |-  ( ph  ->  ( Jt  X )  e.  (TopOn `  X ) )
8 ssid 3363 . . . . 5  |-  CC  C_  CC
9 eqid 2433 . . . . . 6  |-  ( Jt  X )  =  ( Jt  X )
102toponunii 18378 . . . . . . . . 9  |-  CC  =  U. J
1110restid 14354 . . . . . . . 8  |-  ( J  e.  (TopOn `  CC )  ->  ( Jt  CC )  =  J )
122, 11ax-mp 5 . . . . . . 7  |-  ( Jt  CC )  =  J
1312eqcomi 2437 . . . . . 6  |-  J  =  ( Jt  CC )
141, 9, 13cncfcn 20326 . . . . 5  |-  ( ( X  C_  CC  /\  CC  C_  CC )  ->  ( X -cn-> CC )  =  ( ( Jt  X )  Cn  J
) )
155, 8, 14sylancl 655 . . . 4  |-  ( ph  ->  ( X -cn-> CC )  =  ( ( Jt  X )  Cn  J ) )
163, 15eleqtrd 2509 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( ( Jt  X )  Cn  J
) )
17 cncfmpt2f.4 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( X -cn-> CC ) )
1817, 15eleqtrd 2509 . . 3  |-  ( ph  ->  ( x  e.  X  |->  B )  e.  ( ( Jt  X )  Cn  J
) )
19 cncfmpt2f.2 . . 3  |-  ( ph  ->  F  e.  ( ( J  tX  J )  Cn  J ) )
207, 16, 18, 19cnmpt12f 19080 . 2  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( ( Jt  X )  Cn  J
) )
2120, 15eleqtrrd 2510 1  |-  ( ph  ->  ( x  e.  X  |->  ( A F B ) )  e.  ( X -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1362    e. wcel 1755    C_ wss 3316    e. cmpt 4338   ` cfv 5406  (class class class)co 6080   CCcc 9267   ↾t crest 14341   TopOpenctopn 14342  ℂfldccnfld 17661  TopOnctopon 18340    Cn ccn 18669    tX ctx 18974   -cn->ccncf 20293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9325  ax-resscn 9326  ax-1cn 9327  ax-icn 9328  ax-addcl 9329  ax-addrcl 9330  ax-mulcl 9331  ax-mulrcl 9332  ax-mulcom 9333  ax-addass 9334  ax-mulass 9335  ax-distr 9336  ax-i2m1 9337  ax-1ne0 9338  ax-1rid 9339  ax-rnegex 9340  ax-rrecex 9341  ax-cnre 9342  ax-pre-lttri 9343  ax-pre-lttrn 9344  ax-pre-ltadd 9345  ax-pre-mulgt0 9346  ax-pre-sup 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fi 7649  df-sup 7679  df-pnf 9407  df-mnf 9408  df-xr 9409  df-ltxr 9410  df-le 9411  df-sub 9584  df-neg 9585  df-div 9981  df-nn 10310  df-2 10367  df-3 10368  df-4 10369  df-5 10370  df-6 10371  df-7 10372  df-8 10373  df-9 10374  df-10 10375  df-n0 10567  df-z 10634  df-dec 10743  df-uz 10849  df-q 10941  df-rp 10979  df-xneg 11076  df-xadd 11077  df-xmul 11078  df-fz 11424  df-seq 11790  df-exp 11849  df-cj 12571  df-re 12572  df-im 12573  df-sqr 12707  df-abs 12708  df-struct 14158  df-ndx 14159  df-slot 14160  df-base 14161  df-plusg 14233  df-mulr 14234  df-starv 14235  df-tset 14239  df-ple 14240  df-ds 14242  df-unif 14243  df-rest 14343  df-topn 14344  df-topgen 14364  df-psmet 17652  df-xmet 17653  df-met 17654  df-bl 17655  df-mopn 17656  df-cnfld 17662  df-top 18344  df-bases 18346  df-topon 18347  df-topsp 18348  df-cn 18672  df-cnp 18673  df-tx 18976  df-xms 19736  df-ms 19737  df-cncf 20295
This theorem is referenced by:  cncfmpt2ss  20332  addccncf  20333  negcncf  20335  mulcncf  20772  dvcnp2  21235  dvlipcn  21307  dvfsumabs  21336  ftc2  21357  itgparts  21360  itgsubstlem  21361  taylthlem2  21723  sincn  21793  coscn  21794  logcn  21976  loglesqr  22080  pntlem3  22742  lgamgulmlem2  26863  ftc1cnnclem  28306  ftc2nc  28317  areacirclem3  28327  areacirclem4  28328  areacirc  28330  sub1cncf  28501  sub2cncf  28502  areaquad  29434
  Copyright terms: Public domain W3C validator