MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Structured version   Unicode version

Theorem cncfmpt1f 21502
Description: Composition of continuous functions.  -cn-> analog of cnmpt11f 20250. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
cncfmpt1f.2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
cncfmpt1f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, F    ph, x    x, X
Allowed substitution hint:    A( x)

Proof of Theorem cncfmpt1f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 21482 . . . . 5  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2382 . . . . 5  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 5954 . . . 4  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 212 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
7 eqidd 2383 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
8 cncfmpt1f.1 . . . . 5  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
9 cncff 21482 . . . . 5  |-  ( F  e.  ( CC -cn-> CC )  ->  F : CC
--> CC )
108, 9syl 16 . . . 4  |-  ( ph  ->  F : CC --> CC )
1110feqmptd 5827 . . 3  |-  ( ph  ->  F  =  ( y  e.  CC  |->  ( F `
 y ) ) )
12 fveq2 5774 . . 3  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
136, 7, 11, 12fmptcof 5967 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( F `  A ) ) )
141, 8cncfco 21496 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  e.  ( X -cn-> CC ) )
1513, 14eqeltrrd 2471 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1826   A.wral 2732    |-> cmpt 4425    o. ccom 4917   -->wf 5492   ` cfv 5496  (class class class)co 6196   CCcc 9401   -cn->ccncf 21465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-po 4714  df-so 4715  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-er 7229  df-map 7340  df-en 7436  df-dom 7437  df-sdom 7438  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-2 10511  df-cj 12934  df-re 12935  df-im 12936  df-abs 13071  df-cncf 21467
This theorem is referenced by:  taylthlem2  22854  sincn  22924  coscn  22925  pige3  22995  ftc1cnnclem  30254  ftc2nc  30265  itgcoscmulx  31934  itgsincmulx  31939  dirkeritg  32050  dirkercncflem2  32052  dirkercncflem4  32054  fourierdlem16  32071  fourierdlem21  32076  fourierdlem22  32077  fourierdlem39  32094  fourierdlem58  32113  fourierdlem62  32117  fourierdlem68  32123  fourierdlem73  32128  fourierdlem76  32131  fourierdlem78  32133  fourierdlem83  32138  sqwvfoura  32177  sqwvfourb  32178  etransclem18  32201  etransclem46  32229
  Copyright terms: Public domain W3C validator