MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmpt1f Structured version   Unicode version

Theorem cncfmpt1f 21283
Description: Composition of continuous functions.  -cn-> analog of cnmpt11f 20031. (Contributed by Mario Carneiro, 3-Sep-2014.)
Hypotheses
Ref Expression
cncfmpt1f.1  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
cncfmpt1f.2  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
Assertion
Ref Expression
cncfmpt1f  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Distinct variable groups:    x, F    ph, x    x, X
Allowed substitution hint:    A( x)

Proof of Theorem cncfmpt1f
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 cncfmpt1f.2 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( X -cn-> CC ) )
2 cncff 21263 . . . . 5  |-  ( ( x  e.  X  |->  A )  e.  ( X
-cn-> CC )  ->  (
x  e.  X  |->  A ) : X --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
4 eqid 2467 . . . . 5  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
54fmpt 6053 . . . 4  |-  ( A. x  e.  X  A  e.  CC  <->  ( x  e.  X  |->  A ) : X --> CC )
63, 5sylibr 212 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  CC )
7 eqidd 2468 . . 3  |-  ( ph  ->  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A ) )
8 cncfmpt1f.1 . . . . 5  |-  ( ph  ->  F  e.  ( CC
-cn-> CC ) )
9 cncff 21263 . . . . 5  |-  ( F  e.  ( CC -cn-> CC )  ->  F : CC
--> CC )
108, 9syl 16 . . . 4  |-  ( ph  ->  F : CC --> CC )
1110feqmptd 5927 . . 3  |-  ( ph  ->  F  =  ( y  e.  CC  |->  ( F `
 y ) ) )
12 fveq2 5872 . . 3  |-  ( y  =  A  ->  ( F `  y )  =  ( F `  A ) )
136, 7, 11, 12fmptcof 6066 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  ( F `  A ) ) )
141, 8cncfco 21277 . 2  |-  ( ph  ->  ( F  o.  (
x  e.  X  |->  A ) )  e.  ( X -cn-> CC ) )
1513, 14eqeltrrd 2556 1  |-  ( ph  ->  ( x  e.  X  |->  ( F `  A
) )  e.  ( X -cn-> CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767   A.wral 2817    |-> cmpt 4511    o. ccom 5009   -->wf 5590   ` cfv 5594  (class class class)co 6295   CCcc 9502   -cn->ccncf 21246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-po 4806  df-so 4807  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-2 10606  df-cj 12911  df-re 12912  df-im 12913  df-abs 13048  df-cncf 21248
This theorem is referenced by:  taylthlem2  22634  sincn  22704  coscn  22705  pige3  22774  ftc1cnnclem  30022  ftc2nc  30033  itgcoscmulx  31616  itgsincmulx  31621  dirkeritg  31731  dirkercncflem2  31733  dirkercncflem4  31735  fourierdlem16  31752  fourierdlem21  31757  fourierdlem22  31758  fourierdlem39  31775  fourierdlem58  31794  fourierdlem62  31798  fourierdlem68  31804  fourierdlem73  31809  fourierdlem76  31812  fourierdlem78  31814  fourierdlem83  31819  sqwvfoura  31858  sqwvfourb  31859
  Copyright terms: Public domain W3C validator