MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmet Structured version   Unicode version

Theorem cncfmet 21538
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
cncfmet.2  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
cncfmet.3  |-  J  =  ( MetOpen `  C )
cncfmet.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
cncfmet  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )

Proof of Theorem cncfmet
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 759 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
2 simprl 756 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
3 simprr 757 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
4 cncfmet.1 . . . . . . . . . . . . . . . 16  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
54oveqi 6309 . . . . . . . . . . . . . . 15  |-  ( x C w )  =  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )
6 ovres 6441 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )  =  ( x ( abs  o.  -  )
w ) )
75, 6syl5eq 2510 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x C w )  =  ( x ( abs  o.  -  ) w ) )
87ad2ant2l 745 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( x ( abs  o.  -  )
w ) )
9 ssel2 3494 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
10 ssel2 3494 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  w  e.  A )  ->  w  e.  CC )
11 eqid 2457 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1211cnmetdval 21404 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( x ( abs 
o.  -  ) w
)  =  ( abs `  ( x  -  w
) ) )
139, 10, 12syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x ( abs  o.  -  ) w )  =  ( abs `  (
x  -  w ) ) )
148, 13eqtrd 2498 . . . . . . . . . . . 12  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( abs `  (
x  -  w ) ) )
151, 2, 1, 3, 14syl22anc 1229 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( x C w )  =  ( abs `  (
x  -  w ) ) )
1615breq1d 4466 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
x C w )  <  z  <->  ( abs `  ( x  -  w
) )  <  z
) )
17 ffvelrn 6030 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
1817ad2ant2lr 747 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  B
)
19 ffvelrn 6030 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  w  e.  A )  ->  ( f `  w
)  e.  B )
2019ad2ant2l 745 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  B
)
21 cncfmet.2 . . . . . . . . . . . . . . 15  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
2221oveqi 6309 . . . . . . . . . . . . . 14  |-  ( ( f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( ( abs  o.  -  )  |`  ( B  X.  B
) ) ( f `
 w ) )
23 ovres 6441 . . . . . . . . . . . . . 14  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) ( ( abs  o.  -  )  |`  ( B  X.  B ) ) ( f `  w ) )  =  ( ( f `  x ) ( abs  o.  -  ) ( f `  w ) ) )
2422, 23syl5eq 2510 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) D ( f `  w
) )  =  ( ( f `  x
) ( abs  o.  -  ) ( f `
 w ) ) )
2518, 20, 24syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( abs 
o.  -  ) (
f `  w )
) )
26 simpllr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
2726, 18sseldd 3500 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  CC )
2826, 20sseldd 3500 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  CC )
2911cnmetdval 21404 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  CC  /\  ( f `  w
)  e.  CC )  ->  ( ( f `
 x ) ( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3027, 28, 29syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x )
( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3125, 30eqtrd 2498 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) ) )
3231breq1d 4466 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( f `  x
) D ( f `
 w ) )  <  y  <->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
) )
3316, 32imbi12d 320 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3433anassrs 648 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  /\  w  e.  A
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3534ralbidva 2893 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3635rexbidv 2968 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( (
x C w )  <  z  ->  (
( f `  x
) D ( f `
 w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3736ralbidv 2896 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3837ralbidva 2893 . . . 4  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3938pm5.32da 641 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y ) )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
40 cnxmet 21406 . . . . . 6  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
41 xmetres2 20990 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
4240, 41mpan 670 . . . . 5  |-  ( A 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
434, 42syl5eqel 2549 . . . 4  |-  ( A 
C_  CC  ->  C  e.  ( *Met `  A ) )
44 xmetres2 20990 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
4540, 44mpan 670 . . . . 5  |-  ( B 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
4621, 45syl5eqel 2549 . . . 4  |-  ( B 
C_  CC  ->  D  e.  ( *Met `  B ) )
47 cncfmet.3 . . . . 5  |-  J  =  ( MetOpen `  C )
48 cncfmet.4 . . . . 5  |-  K  =  ( MetOpen `  D )
4947, 48metcn 21172 . . . 4  |-  ( ( C  e.  ( *Met `  A )  /\  D  e.  ( *Met `  B
) )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
5043, 46, 49syl2an 477 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
51 elcncf 21519 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
5239, 50, 513bitr4rd 286 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  f  e.  ( J  Cn  K
) ) )
5352eqrdv 2454 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   class class class wbr 4456    X. cxp 5006    |` cres 5010    o. ccom 5012   -->wf 5590   ` cfv 5594  (class class class)co 6296   CCcc 9507    < clt 9645    - cmin 9824   RR+crp 11245   abscabs 13079   *Metcxmt 18530   MetOpencmopn 18535    Cn ccn 19852   -cn->ccncf 21506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-topgen 14861  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-top 19526  df-bases 19528  df-topon 19529  df-cn 19855  df-cnp 19856  df-cncf 21508
This theorem is referenced by:  cncfcn  21539  evthicc  21997  cncfres  30466
  Copyright terms: Public domain W3C validator