MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfmet Structured version   Visualization version   Unicode version

Theorem cncfmet 21940
Description: Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
Hypotheses
Ref Expression
cncfmet.1  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
cncfmet.2  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
cncfmet.3  |-  J  =  ( MetOpen `  C )
cncfmet.4  |-  K  =  ( MetOpen `  D )
Assertion
Ref Expression
cncfmet  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )

Proof of Theorem cncfmet
Dummy variables  w  f  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplll 768 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  A  C_  CC )
2 simprl 764 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  x  e.  A )
3 simprr 766 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  w  e.  A )
4 cncfmet.1 . . . . . . . . . . . . . . . 16  |-  C  =  ( ( abs  o.  -  )  |`  ( A  X.  A ) )
54oveqi 6303 . . . . . . . . . . . . . . 15  |-  ( x C w )  =  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )
6 ovres 6436 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x ( ( abs  o.  -  )  |`  ( A  X.  A
) ) w )  =  ( x ( abs  o.  -  )
w ) )
75, 6syl5eq 2497 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  w  e.  A )  ->  ( x C w )  =  ( x ( abs  o.  -  ) w ) )
87ad2ant2l 752 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( x ( abs  o.  -  )
w ) )
9 ssel2 3427 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  x  e.  A )  ->  x  e.  CC )
10 ssel2 3427 . . . . . . . . . . . . . 14  |-  ( ( A  C_  CC  /\  w  e.  A )  ->  w  e.  CC )
11 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1211cnmetdval 21791 . . . . . . . . . . . . . 14  |-  ( ( x  e.  CC  /\  w  e.  CC )  ->  ( x ( abs 
o.  -  ) w
)  =  ( abs `  ( x  -  w
) ) )
139, 10, 12syl2an 480 . . . . . . . . . . . . 13  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x ( abs  o.  -  ) w )  =  ( abs `  (
x  -  w ) ) )
148, 13eqtrd 2485 . . . . . . . . . . . 12  |-  ( ( ( A  C_  CC  /\  x  e.  A )  /\  ( A  C_  CC  /\  w  e.  A
) )  ->  (
x C w )  =  ( abs `  (
x  -  w ) ) )
151, 2, 1, 3, 14syl22anc 1269 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( x C w )  =  ( abs `  (
x  -  w ) ) )
1615breq1d 4412 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
x C w )  <  z  <->  ( abs `  ( x  -  w
) )  <  z
) )
17 ffvelrn 6020 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  x  e.  A )  ->  ( f `  x
)  e.  B )
1817ad2ant2lr 754 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  B
)
19 ffvelrn 6020 . . . . . . . . . . . . . 14  |-  ( ( f : A --> B  /\  w  e.  A )  ->  ( f `  w
)  e.  B )
2019ad2ant2l 752 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  B
)
21 cncfmet.2 . . . . . . . . . . . . . . 15  |-  D  =  ( ( abs  o.  -  )  |`  ( B  X.  B ) )
2221oveqi 6303 . . . . . . . . . . . . . 14  |-  ( ( f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( ( abs  o.  -  )  |`  ( B  X.  B
) ) ( f `
 w ) )
23 ovres 6436 . . . . . . . . . . . . . 14  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) ( ( abs  o.  -  )  |`  ( B  X.  B ) ) ( f `  w ) )  =  ( ( f `  x ) ( abs  o.  -  ) ( f `  w ) ) )
2422, 23syl5eq 2497 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  w
)  e.  B )  ->  ( ( f `
 x ) D ( f `  w
) )  =  ( ( f `  x
) ( abs  o.  -  ) ( f `
 w ) ) )
2518, 20, 24syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( ( f `  x ) ( abs 
o.  -  ) (
f `  w )
) )
26 simpllr 769 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  B  C_  CC )
2726, 18sseldd 3433 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  x )  e.  CC )
2826, 20sseldd 3433 . . . . . . . . . . . . 13  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( f `  w )  e.  CC )
2911cnmetdval 21791 . . . . . . . . . . . . 13  |-  ( ( ( f `  x
)  e.  CC  /\  ( f `  w
)  e.  CC )  ->  ( ( f `
 x ) ( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3027, 28, 29syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x )
( abs  o.  -  )
( f `  w
) )  =  ( abs `  ( ( f `  x )  -  ( f `  w ) ) ) )
3125, 30eqtrd 2485 . . . . . . . . . . 11  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
f `  x ) D ( f `  w ) )  =  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) ) )
3231breq1d 4412 . . . . . . . . . 10  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( f `  x
) D ( f `
 w ) )  <  y  <->  ( abs `  ( ( f `  x )  -  (
f `  w )
) )  <  y
) )
3316, 32imbi12d 322 . . . . . . . . 9  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  (
x  e.  A  /\  w  e.  A )
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3433anassrs 654 . . . . . . . 8  |-  ( ( ( ( ( A 
C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  /\  w  e.  A
)  ->  ( (
( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y )  <-> 
( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3534ralbidva 2824 . . . . . . 7  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3635rexbidv 2901 . . . . . 6  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( E. z  e.  RR+  A. w  e.  A  ( (
x C w )  <  z  ->  (
( f `  x
) D ( f `
 w ) )  <  y )  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3736ralbidv 2827 . . . . 5  |-  ( ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  /\  x  e.  A )  ->  ( A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y )  <->  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
x  -  w ) )  <  z  -> 
( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3837ralbidva 2824 . . . 4  |-  ( ( ( A  C_  CC  /\  B  C_  CC )  /\  f : A --> B )  ->  ( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  ->  ( ( f `  x ) D ( f `  w ) )  <  y )  <->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) )
3938pm5.32da 647 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  <  z  -> 
( ( f `  x ) D ( f `  w ) )  <  y ) )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
40 cnxmet 21793 . . . . . 6  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
41 xmetres2 21376 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( A  X.  A ) )  e.  ( *Met `  A ) )
4240, 41mpan 676 . . . . 5  |-  ( A 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( A  X.  A
) )  e.  ( *Met `  A
) )
434, 42syl5eqel 2533 . . . 4  |-  ( A 
C_  CC  ->  C  e.  ( *Met `  A ) )
44 xmetres2 21376 . . . . . 6  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  B  C_  CC )  -> 
( ( abs  o.  -  )  |`  ( B  X.  B ) )  e.  ( *Met `  B ) )
4540, 44mpan 676 . . . . 5  |-  ( B 
C_  CC  ->  ( ( abs  o.  -  )  |`  ( B  X.  B
) )  e.  ( *Met `  B
) )
4621, 45syl5eqel 2533 . . . 4  |-  ( B 
C_  CC  ->  D  e.  ( *Met `  B ) )
47 cncfmet.3 . . . . 5  |-  J  =  ( MetOpen `  C )
48 cncfmet.4 . . . . 5  |-  K  =  ( MetOpen `  D )
4947, 48metcn 21558 . . . 4  |-  ( ( C  e.  ( *Met `  A )  /\  D  e.  ( *Met `  B
) )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
5043, 46, 49syl2an 480 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( J  Cn  K )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( x C w )  < 
z  ->  ( (
f `  x ) D ( f `  w ) )  < 
y ) ) ) )
51 elcncf 21921 . . 3  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  ( f : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( x  -  w
) )  <  z  ->  ( abs `  (
( f `  x
)  -  ( f `
 w ) ) )  <  y ) ) ) )
5239, 50, 513bitr4rd 290 . 2  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  (
f  e.  ( A
-cn-> B )  <->  f  e.  ( J  Cn  K
) ) )
5352eqrdv 2449 1  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( A -cn-> B )  =  ( J  Cn  K
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   A.wral 2737   E.wrex 2738    C_ wss 3404   class class class wbr 4402    X. cxp 4832    |` cres 4836    o. ccom 4838   -->wf 5578   ` cfv 5582  (class class class)co 6290   CCcc 9537    < clt 9675    - cmin 9860   RR+crp 11302   abscabs 13297   *Metcxmt 18955   MetOpencmopn 18960    Cn ccn 20240   -cn->ccncf 21908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-sup 7956  df-inf 7957  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-seq 12214  df-exp 12273  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-top 19921  df-bases 19922  df-topon 19923  df-cn 20243  df-cnp 20244  df-cncf 21910
This theorem is referenced by:  cncfcn  21941  evthicc  22410  cncfres  32097
  Copyright terms: Public domain W3C validator