MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfi Structured version   Unicode version

Theorem cncfi 21161
Description: Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
cncfi  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Distinct variable groups:    z, w, A    w, C, z    w, F, z    w, R, z   
w, B, z

Proof of Theorem cncfi
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncfrss 21158 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  A  C_  CC )
2 cncfrss2 21159 . . . . . 6  |-  ( F  e.  ( A -cn-> B )  ->  B  C_  CC )
3 elcncf2 21157 . . . . . 6  |-  ( ( A  C_  CC  /\  B  C_  CC )  ->  ( F  e.  ( A -cn-> B )  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
41, 2, 3syl2anc 661 . . . . 5  |-  ( F  e.  ( A -cn-> B )  ->  ( F  e.  ( A -cn-> B )  <-> 
( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) ) )
54ibi 241 . . . 4  |-  ( F  e.  ( A -cn-> B )  ->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) ) )
65simprd 463 . . 3  |-  ( F  e.  ( A -cn-> B )  ->  A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y ) )
7 oveq2 6292 . . . . . . . 8  |-  ( x  =  C  ->  (
w  -  x )  =  ( w  -  C ) )
87fveq2d 5870 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( w  -  x ) )  =  ( abs `  (
w  -  C ) ) )
98breq1d 4457 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
w  -  x ) )  <  z  <->  ( abs `  ( w  -  C
) )  <  z
) )
10 fveq2 5866 . . . . . . . . 9  |-  ( x  =  C  ->  ( F `  x )  =  ( F `  C ) )
1110oveq2d 6300 . . . . . . . 8  |-  ( x  =  C  ->  (
( F `  w
)  -  ( F `
 x ) )  =  ( ( F `
 w )  -  ( F `  C ) ) )
1211fveq2d 5870 . . . . . . 7  |-  ( x  =  C  ->  ( abs `  ( ( F `
 w )  -  ( F `  x ) ) )  =  ( abs `  ( ( F `  w )  -  ( F `  C ) ) ) )
1312breq1d 4457 . . . . . 6  |-  ( x  =  C  ->  (
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
) )
149, 13imbi12d 320 . . . . 5  |-  ( x  =  C  ->  (
( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
1514rexralbidv 2981 . . . 4  |-  ( x  =  C  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  x ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  x )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y ) ) )
16 breq2 4451 . . . . . 6  |-  ( y  =  R  ->  (
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y  <->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  R
) )
1716imbi2d 316 . . . . 5  |-  ( y  =  R  ->  (
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  y )  <-> 
( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1817rexralbidv 2981 . . . 4  |-  ( y  =  R  ->  ( E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C ) )  < 
z  ->  ( abs `  ( ( F `  w )  -  ( F `  C )
) )  <  y
)  <->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
1915, 18rspc2v 3223 . . 3  |-  ( ( C  e.  A  /\  R  e.  RR+ )  -> 
( A. x  e.  A  A. y  e.  RR+  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  x ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 x ) ) )  <  y )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) ) )
206, 19mpan9 469 . 2  |-  ( ( F  e.  ( A
-cn-> B )  /\  ( C  e.  A  /\  R  e.  RR+ ) )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  (
w  -  C ) )  <  z  -> 
( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
21203impb 1192 1  |-  ( ( F  e.  ( A
-cn-> B )  /\  C  e.  A  /\  R  e.  RR+ )  ->  E. z  e.  RR+  A. w  e.  A  ( ( abs `  ( w  -  C
) )  <  z  ->  ( abs `  (
( F `  w
)  -  ( F `
 C ) ) )  <  R ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   class class class wbr 4447   -->wf 5584   ` cfv 5588  (class class class)co 6284   CCcc 9490    < clt 9628    - cmin 9805   RR+crp 11220   abscabs 13030   -cn->ccncf 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-2 10594  df-cj 12895  df-re 12896  df-im 12897  df-abs 13032  df-cncf 21145
This theorem is referenced by:  cncffvrn  21165  climcncf  21167  cncfco  21174  ivthlem2  21627  ivthlem3  21628  ulmcn  22556  pntlem3  23550  sinccvglem  28541  itg2gt0cn  29675
  Copyright terms: Public domain W3C validator