MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnaddabl Structured version   Unicode version

Theorem cnaddabl 17197
Description: The complex numbers are an Abelian group under addition. This version of cnaddablx 17196 hides the explicit structure indices i.e. is "scaffold-independent". Note that the proof also does not reference explicit structure indices. The actual structure is dependent on how  Base and  +g is defined. This theorem should not be referenced in any proof. For the group/ring properties of the complex numbers, see cnring 18758. (Contributed by NM, 20-Oct-2012.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnaddabl.g  |-  G  =  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. }
Assertion
Ref Expression
cnaddabl  |-  G  e. 
Abel

Proof of Theorem cnaddabl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 9602 . . . 4  |-  CC  e.  _V
2 cnaddabl.g . . . . 5  |-  G  =  { <. ( Base `  ndx ) ,  CC >. ,  <. ( +g  `  ndx ) ,  +  >. }
32grpbase 14951 . . . 4  |-  ( CC  e.  _V  ->  CC  =  ( Base `  G
) )
41, 3ax-mp 5 . . 3  |-  CC  =  ( Base `  G )
5 addex 11262 . . . 4  |-  +  e.  _V
62grpplusg 14952 . . . 4  |-  (  +  e.  _V  ->  +  =  ( +g  `  G
) )
75, 6ax-mp 5 . . 3  |-  +  =  ( +g  `  G )
8 addcl 9603 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
9 addass 9608 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  +  y )  +  z )  =  ( x  +  ( y  +  z ) ) )
10 0cn 9617 . . 3  |-  0  e.  CC
11 addid2 9796 . . 3  |-  ( x  e.  CC  ->  (
0  +  x )  =  x )
12 negcl 9855 . . 3  |-  ( x  e.  CC  ->  -u x  e.  CC )
13 addcom 9799 . . . . 5  |-  ( ( x  e.  CC  /\  -u x  e.  CC )  ->  ( x  +  -u x )  =  (
-u x  +  x
) )
1412, 13mpdan 666 . . . 4  |-  ( x  e.  CC  ->  (
x  +  -u x
)  =  ( -u x  +  x )
)
15 negid 9901 . . . 4  |-  ( x  e.  CC  ->  (
x  +  -u x
)  =  0 )
1614, 15eqtr3d 2445 . . 3  |-  ( x  e.  CC  ->  ( -u x  +  x )  =  0 )
174, 7, 8, 9, 10, 11, 12, 16isgrpi 16398 . 2  |-  G  e. 
Grp
18 addcom 9799 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  =  ( y  +  x ) )
1917, 4, 7, 18isabli 17134 1  |-  G  e. 
Abel
Colors of variables: wff setvar class
Syntax hints:    = wceq 1405    e. wcel 1842   _Vcvv 3058   {cpr 3973   <.cop 3977   ` cfv 5568  (class class class)co 6277   CCcc 9519   0cc0 9521    + caddc 9524   -ucneg 9841   ndxcnx 14836   Basecbs 14839   +g cplusg 14907   Abelcabl 17121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-addf 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-plusg 14920  df-0g 15054  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-grp 16379  df-cmn 17122  df-abl 17123
This theorem is referenced by:  cnaddcom  31970
  Copyright terms: Public domain W3C validator