MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmvth Structured version   Unicode version

Theorem cmvth 21466
Description: Cauchy's Mean Value Theorem. If  F ,  G are real continuous functions on  [ A ,  B ] differentiable on  ( A ,  B ), then there is some  x  e.  ( A ,  B ) such that  F'  ( x )  /  G'  ( x )  =  ( F ( A )  -  F
( B ) )  /  ( G ( A )  -  G
( B ) ). (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypotheses
Ref Expression
cmvth.a  |-  ( ph  ->  A  e.  RR )
cmvth.b  |-  ( ph  ->  B  e.  RR )
cmvth.lt  |-  ( ph  ->  A  <  B )
cmvth.f  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
cmvth.g  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> RR ) )
cmvth.df  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
cmvth.dg  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
Assertion
Ref Expression
cmvth  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )
Distinct variable groups:    x, A    x, B    x, F    x, G    ph, x

Proof of Theorem cmvth
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 cmvth.a . . 3  |-  ( ph  ->  A  e.  RR )
2 cmvth.b . . 3  |-  ( ph  ->  B  e.  RR )
3 cmvth.lt . . 3  |-  ( ph  ->  A  <  B )
4 eqid 2443 . . . 4  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
54subcn 20445 . . . 4  |-  -  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
64mulcn 20446 . . . . 5  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
7 cmvth.f . . . . . . . . 9  |-  ( ph  ->  F  e.  ( ( A [,] B )
-cn-> RR ) )
8 cncff 20472 . . . . . . . . 9  |-  ( F  e.  ( ( A [,] B ) -cn-> RR )  ->  F :
( A [,] B
) --> RR )
97, 8syl 16 . . . . . . . 8  |-  ( ph  ->  F : ( A [,] B ) --> RR )
101rexrd 9436 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR* )
112rexrd 9436 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR* )
121, 2, 3ltled 9525 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
13 ubicc2 11405 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
1410, 11, 12, 13syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  B  e.  ( A [,] B ) )
159, 14ffvelrnd 5847 . . . . . . 7  |-  ( ph  ->  ( F `  B
)  e.  RR )
16 lbicc2 11404 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B
) )
1710, 11, 12, 16syl3anc 1218 . . . . . . . 8  |-  ( ph  ->  A  e.  ( A [,] B ) )
189, 17ffvelrnd 5847 . . . . . . 7  |-  ( ph  ->  ( F `  A
)  e.  RR )
1915, 18resubcld 9779 . . . . . 6  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  RR )
20 iccssre 11380 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
211, 2, 20syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( A [,] B
)  C_  RR )
22 ax-resscn 9342 . . . . . . 7  |-  RR  C_  CC
2321, 22syl6ss 3371 . . . . . 6  |-  ( ph  ->  ( A [,] B
)  C_  CC )
2422a1i 11 . . . . . 6  |-  ( ph  ->  RR  C_  CC )
25 cncfmptc 20490 . . . . . 6  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  e.  RR  /\  ( A [,] B ) 
C_  CC  /\  RR  C_  CC )  ->  ( z  e.  ( A [,] B )  |->  ( ( F `  B )  -  ( F `  A ) ) )  e.  ( ( A [,] B ) -cn-> RR ) )
2619, 23, 24, 25syl3anc 1218 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( F `  B )  -  ( F `  A )
) )  e.  ( ( A [,] B
) -cn-> RR ) )
27 cmvth.g . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( A [,] B )
-cn-> RR ) )
28 cncff 20472 . . . . . . . 8  |-  ( G  e.  ( ( A [,] B ) -cn-> RR )  ->  G :
( A [,] B
) --> RR )
2927, 28syl 16 . . . . . . 7  |-  ( ph  ->  G : ( A [,] B ) --> RR )
3029feqmptd 5747 . . . . . 6  |-  ( ph  ->  G  =  ( z  e.  ( A [,] B )  |->  ( G `
 z ) ) )
3130, 27eqeltrrd 2518 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( G `  z
) )  e.  ( ( A [,] B
) -cn-> RR ) )
32 remulcl 9370 . . . . 5  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  e.  RR  /\  ( G `  z )  e.  RR )  -> 
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  e.  RR )
334, 6, 26, 31, 22, 32cncfmpt2ss 20494 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) ) )  e.  ( ( A [,] B )
-cn-> RR ) )
3429, 14ffvelrnd 5847 . . . . . . 7  |-  ( ph  ->  ( G `  B
)  e.  RR )
3529, 17ffvelrnd 5847 . . . . . . 7  |-  ( ph  ->  ( G `  A
)  e.  RR )
3634, 35resubcld 9779 . . . . . 6  |-  ( ph  ->  ( ( G `  B )  -  ( G `  A )
)  e.  RR )
37 cncfmptc 20490 . . . . . 6  |-  ( ( ( ( G `  B )  -  ( G `  A )
)  e.  RR  /\  ( A [,] B ) 
C_  CC  /\  RR  C_  CC )  ->  ( z  e.  ( A [,] B )  |->  ( ( G `  B )  -  ( G `  A ) ) )  e.  ( ( A [,] B ) -cn-> RR ) )
3836, 23, 24, 37syl3anc 1218 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( G `  B )  -  ( G `  A )
) )  e.  ( ( A [,] B
) -cn-> RR ) )
399feqmptd 5747 . . . . . 6  |-  ( ph  ->  F  =  ( z  e.  ( A [,] B )  |->  ( F `
 z ) ) )
4039, 7eqeltrrd 2518 . . . . 5  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( F `  z
) )  e.  ( ( A [,] B
) -cn-> RR ) )
41 remulcl 9370 . . . . 5  |-  ( ( ( ( G `  B )  -  ( G `  A )
)  e.  RR  /\  ( F `  z )  e.  RR )  -> 
( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) )  e.  RR )
424, 6, 38, 40, 22, 41cncfmpt2ss 20494 . . . 4  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) )  e.  ( ( A [,] B )
-cn-> RR ) )
43 resubcl 9676 . . . 4  |-  ( ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  e.  RR  /\  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) )  e.  RR )  -> 
( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) )  e.  RR )
444, 5, 33, 42, 22, 43cncfmpt2ss 20494 . . 3  |-  ( ph  ->  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) )  e.  ( ( A [,] B
) -cn-> RR ) )
4519recnd 9415 . . . . . . . . . 10  |-  ( ph  ->  ( ( F `  B )  -  ( F `  A )
)  e.  CC )
4645adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( ( F `  B )  -  ( F `  A ) )  e.  CC )
4729ffvelrnda 5846 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( G `  z )  e.  RR )
4847recnd 9415 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( G `  z )  e.  CC )
4946, 48mulcld 9409 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  e.  CC )
5036adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( ( G `  B )  -  ( G `  A ) )  e.  RR )
519ffvelrnda 5846 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( F `  z )  e.  RR )
5250, 51remulcld 9417 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( F `  z ) )  e.  RR )
5352recnd 9415 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( F `  z ) )  e.  CC )
5449, 53subcld 9722 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( (
( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  e.  CC )
554tgioo2 20383 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
56 iccntr 20401 . . . . . . . 8  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
571, 2, 56syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( int `  ( topGen `
 ran  (,) )
) `  ( A [,] B ) )  =  ( A (,) B
) )
5824, 21, 54, 55, 4, 57dvmptntr 21448 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) )  =  ( RR 
_D  ( z  e.  ( A (,) B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) ) )
59 reelprrecn 9377 . . . . . . . 8  |-  RR  e.  { RR ,  CC }
6059a1i 11 . . . . . . 7  |-  ( ph  ->  RR  e.  { RR ,  CC } )
61 ioossicc 11384 . . . . . . . . 9  |-  ( A (,) B )  C_  ( A [,] B )
6261sseli 3355 . . . . . . . 8  |-  ( z  e.  ( A (,) B )  ->  z  e.  ( A [,] B
) )
6362, 49sylan2 474 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  e.  CC )
64 ovex 6119 . . . . . . . 8  |-  ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  e. 
_V
6564a1i 11 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  e. 
_V )
6662, 48sylan2 474 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( G `  z )  e.  CC )
67 fvex 5704 . . . . . . . . 9  |-  ( ( RR  _D  G ) `
 z )  e. 
_V
6867a1i 11 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  z )  e.  _V )
6930oveq2d 6110 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  G
)  =  ( RR 
_D  ( z  e.  ( A [,] B
)  |->  ( G `  z ) ) ) )
70 dvf 21385 . . . . . . . . . . 11  |-  ( RR 
_D  G ) : dom  ( RR  _D  G ) --> CC
71 cmvth.dg . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( RR  _D  G )  =  ( A (,) B ) )
7271feq2d 5550 . . . . . . . . . . 11  |-  ( ph  ->  ( ( RR  _D  G ) : dom  ( RR  _D  G
) --> CC  <->  ( RR  _D  G ) : ( A (,) B ) --> CC ) )
7370, 72mpbii 211 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  G
) : ( A (,) B ) --> CC )
7473feqmptd 5747 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  G
)  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  G ) `
 z ) ) )
7524, 21, 48, 55, 4, 57dvmptntr 21448 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( G `  z ) ) )  =  ( RR  _D  ( z  e.  ( A (,) B )  |->  ( G `
 z ) ) ) )
7669, 74, 753eqtr3rd 2484 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( G `  z ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  G
) `  z )
) )
7760, 66, 68, 76, 45dvmptcmul 21441 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) ) ) )
7862, 53sylan2 474 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( F `  z ) )  e.  CC )
79 ovex 6119 . . . . . . . 8  |-  ( ( ( G `  B
)  -  ( G `
 A ) )  x.  ( ( RR 
_D  F ) `  z ) )  e. 
_V
8079a1i 11 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( ( RR 
_D  F ) `  z ) )  e. 
_V )
8151recnd 9415 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( A [,] B ) )  ->  ( F `  z )  e.  CC )
8262, 81sylan2 474 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( F `  z )  e.  CC )
83 fvex 5704 . . . . . . . . 9  |-  ( ( RR  _D  F ) `
 z )  e. 
_V
8483a1i 11 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  z )  e.  _V )
8539oveq2d 6110 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  =  ( RR 
_D  ( z  e.  ( A [,] B
)  |->  ( F `  z ) ) ) )
86 dvf 21385 . . . . . . . . . . 11  |-  ( RR 
_D  F ) : dom  ( RR  _D  F ) --> CC
87 cmvth.df . . . . . . . . . . . 12  |-  ( ph  ->  dom  ( RR  _D  F )  =  ( A (,) B ) )
8887feq2d 5550 . . . . . . . . . . 11  |-  ( ph  ->  ( ( RR  _D  F ) : dom  ( RR  _D  F
) --> CC  <->  ( RR  _D  F ) : ( A (,) B ) --> CC ) )
8986, 88mpbii 211 . . . . . . . . . 10  |-  ( ph  ->  ( RR  _D  F
) : ( A (,) B ) --> CC )
9089feqmptd 5747 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  F
)  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  F ) `
 z ) ) )
9124, 21, 81, 55, 4, 57dvmptntr 21448 . . . . . . . . 9  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( F `  z ) ) )  =  ( RR  _D  ( z  e.  ( A (,) B )  |->  ( F `
 z ) ) ) )
9285, 90, 913eqtr3rd 2484 . . . . . . . 8  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( F `  z ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( RR  _D  F
) `  z )
) )
9336recnd 9415 . . . . . . . 8  |-  ( ph  ->  ( ( G `  B )  -  ( G `  A )
)  e.  CC )
9460, 82, 84, 92, 93dvmptcmul 21441 . . . . . . 7  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( ( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) ) ) )
9560, 63, 65, 77, 78, 80, 94dvmptsub 21444 . . . . . 6  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A (,) B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) ) )
9658, 95eqtrd 2475 . . . . 5  |-  ( ph  ->  ( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) )  =  ( z  e.  ( A (,) B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) ) )
9796dmeqd 5045 . . . 4  |-  ( ph  ->  dom  ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) )  =  dom  ( z  e.  ( A (,) B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `
 z ) ) ) ) )
98 ovex 6119 . . . . 5  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) )  e. 
_V
99 eqid 2443 . . . . 5  |-  ( z  e.  ( A (,) B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) )  =  ( z  e.  ( A (,) B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `
 z ) ) ) )
10098, 99dmmpti 5543 . . . 4  |-  dom  (
z  e.  ( A (,) B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) ) )  =  ( A (,) B )
10197, 100syl6eq 2491 . . 3  |-  ( ph  ->  dom  ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) )  =  ( A (,) B
) )
10215recnd 9415 . . . . . . . 8  |-  ( ph  ->  ( F `  B
)  e.  CC )
10335recnd 9415 . . . . . . . 8  |-  ( ph  ->  ( G `  A
)  e.  CC )
104102, 103mulcld 9409 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  ( G `  A )
)  e.  CC )
10518recnd 9415 . . . . . . . 8  |-  ( ph  ->  ( F `  A
)  e.  CC )
10634recnd 9415 . . . . . . . 8  |-  ( ph  ->  ( G `  B
)  e.  CC )
107105, 106mulcld 9409 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  x.  ( G `  B )
)  e.  CC )
108105, 103mulcld 9409 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  x.  ( G `  A )
)  e.  CC )
109104, 107, 108nnncan2d 9757 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  B )  x.  ( G `  A ) )  -  ( ( F `  A )  x.  ( G `  A )
) )  -  (
( ( F `  A )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  A ) ) ) )  =  ( ( ( F `  B
)  x.  ( G `
 A ) )  -  ( ( F `
 A )  x.  ( G `  B
) ) ) )
110102, 106mulcld 9409 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  ( G `  B )
)  e.  CC )
111110, 107, 104nnncan1d 9756 . . . . . 6  |-  ( ph  ->  ( ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  B )
) )  -  (
( ( F `  B )  x.  ( G `  B )
)  -  ( ( F `  B )  x.  ( G `  A ) ) ) )  =  ( ( ( F `  B
)  x.  ( G `
 A ) )  -  ( ( F `
 A )  x.  ( G `  B
) ) ) )
112109, 111eqtr4d 2478 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  B )  x.  ( G `  A ) )  -  ( ( F `  A )  x.  ( G `  A )
) )  -  (
( ( F `  A )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  A ) ) ) )  =  ( ( ( ( F `  B )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  B ) ) )  -  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  B )  x.  ( G `  A )
) ) ) )
113102, 105, 103subdird 9804 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 A ) )  =  ( ( ( F `  B )  x.  ( G `  A ) )  -  ( ( F `  A )  x.  ( G `  A )
) ) )
11493, 105mulcomd 9410 . . . . . . 7  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 A ) )  =  ( ( F `
 A )  x.  ( ( G `  B )  -  ( G `  A )
) ) )
115105, 106, 103subdid 9803 . . . . . . 7  |-  ( ph  ->  ( ( F `  A )  x.  (
( G `  B
)  -  ( G `
 A ) ) )  =  ( ( ( F `  A
)  x.  ( G `
 B ) )  -  ( ( F `
 A )  x.  ( G `  A
) ) ) )
116114, 115eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 A ) )  =  ( ( ( F `  A )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  A )
) ) )
117113, 116oveq12d 6112 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 A ) ) )  =  ( ( ( ( F `  B )  x.  ( G `  A )
)  -  ( ( F `  A )  x.  ( G `  A ) ) )  -  ( ( ( F `  A )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  A )
) ) ) )
118102, 105, 106subdird 9804 . . . . . 6  |-  ( ph  ->  ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 B ) )  =  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  A )  x.  ( G `  B )
) ) )
11993, 102mulcomd 9410 . . . . . . 7  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 B ) )  =  ( ( F `
 B )  x.  ( ( G `  B )  -  ( G `  A )
) ) )
120102, 106, 103subdid 9803 . . . . . . 7  |-  ( ph  ->  ( ( F `  B )  x.  (
( G `  B
)  -  ( G `
 A ) ) )  =  ( ( ( F `  B
)  x.  ( G `
 B ) )  -  ( ( F `
 B )  x.  ( G `  A
) ) ) )
121119, 120eqtrd 2475 . . . . . 6  |-  ( ph  ->  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 B ) )  =  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  B )  x.  ( G `  A )
) ) )
122118, 121oveq12d 6112 . . . . 5  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  B
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 B ) ) )  =  ( ( ( ( F `  B )  x.  ( G `  B )
)  -  ( ( F `  A )  x.  ( G `  B ) ) )  -  ( ( ( F `  B )  x.  ( G `  B ) )  -  ( ( F `  B )  x.  ( G `  A )
) ) ) )
123112, 117, 1223eqtr4d 2485 . . . 4  |-  ( ph  ->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 A ) ) )  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 B ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) ) )
124 fveq2 5694 . . . . . . . 8  |-  ( z  =  A  ->  ( G `  z )  =  ( G `  A ) )
125124oveq2d 6110 . . . . . . 7  |-  ( z  =  A  ->  (
( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  =  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) ) )
126 fveq2 5694 . . . . . . . 8  |-  ( z  =  A  ->  ( F `  z )  =  ( F `  A ) )
127126oveq2d 6110 . . . . . . 7  |-  ( z  =  A  ->  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  A
) ) )
128125, 127oveq12d 6112 . . . . . 6  |-  ( z  =  A  ->  (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  =  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  A
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 A ) ) ) )
129 eqid 2443 . . . . . 6  |-  ( z  e.  ( A [,] B )  |->  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) )  =  ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) )
130 ovex 6119 . . . . . 6  |-  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  e. 
_V
131128, 129, 130fvmpt3i 5781 . . . . 5  |-  ( A  e.  ( A [,] B )  ->  (
( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) `  A
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 A ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  A
) ) ) )
13217, 131syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) `  A
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 A ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  A
) ) ) )
133 fveq2 5694 . . . . . . . 8  |-  ( z  =  B  ->  ( G `  z )  =  ( G `  B ) )
134133oveq2d 6110 . . . . . . 7  |-  ( z  =  B  ->  (
( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 z ) )  =  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  B
) ) )
135 fveq2 5694 . . . . . . . 8  |-  ( z  =  B  ->  ( F `  z )  =  ( F `  B ) )
136135oveq2d 6110 . . . . . . 7  |-  ( z  =  B  ->  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) )
137134, 136oveq12d 6112 . . . . . 6  |-  ( z  =  B  ->  (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) )  =  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  B
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 B ) ) ) )
138137, 129, 130fvmpt3i 5781 . . . . 5  |-  ( B  e.  ( A [,] B )  ->  (
( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) `  B
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 B ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) ) )
13914, 138syl 16 . . . 4  |-  ( ph  ->  ( ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) `  B
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( G `
 B ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  B
) ) ) )
140123, 132, 1393eqtr4d 2485 . . 3  |-  ( ph  ->  ( ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) `  A
)  =  ( ( z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) `
 B ) )
1411, 2, 3, 44, 101, 140rolle 21465 . 2  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) ) `  x )  =  0 )
14296fveq1d 5696 . . . . . 6  |-  ( ph  ->  ( ( RR  _D  ( z  e.  ( A [,] B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( G `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( F `
 z ) ) ) ) ) `  x )  =  ( ( z  e.  ( A (,) B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) ) ) ) `  x
) )
143 fveq2 5694 . . . . . . . . 9  |-  ( z  =  x  ->  (
( RR  _D  G
) `  z )  =  ( ( RR 
_D  G ) `  x ) )
144143oveq2d 6110 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 z ) )  =  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  x
) ) )
145 fveq2 5694 . . . . . . . . 9  |-  ( z  =  x  ->  (
( RR  _D  F
) `  z )  =  ( ( RR 
_D  F ) `  x ) )
146145oveq2d 6110 . . . . . . . 8  |-  ( z  =  x  ->  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )
147144, 146oveq12d 6112 . . . . . . 7  |-  ( z  =  x  ->  (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  z
) ) )  =  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  x
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 x ) ) ) )
148147, 99, 98fvmpt3i 5781 . . . . . 6  |-  ( x  e.  ( A (,) B )  ->  (
( z  e.  ( A (,) B ) 
|->  ( ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  z
) )  -  (
( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 z ) ) ) ) `  x
)  =  ( ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) ) )
149142, 148sylan9eq 2495 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) ) `  x )  =  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) ) )
150149eqeq1d 2451 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) ) `  x )  =  0  <->  ( (
( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )  =  0 ) )
15145adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( F `  B )  -  ( F `  A ) )  e.  CC )
15273ffvelrnda 5846 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  G ) `  x )  e.  CC )
153151, 152mulcld 9409 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  x ) )  e.  CC )
15493adantr 465 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( G `  B )  -  ( G `  A ) )  e.  CC )
15589ffvelrnda 5846 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( ( RR  _D  F ) `  x )  e.  CC )
156154, 155mulcld 9409 . . . . 5  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( G `  B
)  -  ( G `
 A ) )  x.  ( ( RR 
_D  F ) `  x ) )  e.  CC )
157153, 156subeq0ad 9732 . . . 4  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )  =  0  <->  ( ( ( F `  B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `  x
) )  =  ( ( ( G `  B )  -  ( G `  A )
)  x.  ( ( RR  _D  F ) `
 x ) ) ) )
158150, 157bitrd 253 . . 3  |-  ( (
ph  /\  x  e.  ( A (,) B ) )  ->  ( (
( RR  _D  (
z  e.  ( A [,] B )  |->  ( ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( G `
 z ) )  -  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( F `  z
) ) ) ) ) `  x )  =  0  <->  ( (
( F `  B
)  -  ( F `
 A ) )  x.  ( ( RR 
_D  G ) `  x ) )  =  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `
 x ) ) ) )
159158rexbidva 2735 . 2  |-  ( ph  ->  ( E. x  e.  ( A (,) B
) ( ( RR 
_D  ( z  e.  ( A [,] B
)  |->  ( ( ( ( F `  B
)  -  ( F `
 A ) )  x.  ( G `  z ) )  -  ( ( ( G `
 B )  -  ( G `  A ) )  x.  ( F `
 z ) ) ) ) ) `  x )  =  0  <->  E. x  e.  ( A (,) B ) ( ( ( F `  B )  -  ( F `  A )
)  x.  ( ( RR  _D  G ) `
 x ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) ) )
160141, 159mpbid 210 1  |-  ( ph  ->  E. x  e.  ( A (,) B ) ( ( ( F `
 B )  -  ( F `  A ) )  x.  ( ( RR  _D  G ) `
 x ) )  =  ( ( ( G `  B )  -  ( G `  A ) )  x.  ( ( RR  _D  F ) `  x
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2719   _Vcvv 2975    C_ wss 3331   {cpr 3882   class class class wbr 4295    e. cmpt 4353   dom cdm 4843   ran crn 4844   -->wf 5417   ` cfv 5421  (class class class)co 6094   CCcc 9283   RRcr 9284   0cc0 9285    x. cmul 9290   RR*cxr 9420    < clt 9421    <_ cle 9422    - cmin 9598   (,)cioo 11303   [,]cicc 11306   TopOpenctopn 14363   topGenctg 14379  ℂfldccnfld 17821   intcnt 18624   -cn->ccncf 20455    _D cdv 21341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-addf 9364  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-submnd 15468  df-mulg 15551  df-cntz 15838  df-cmn 16282  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-fbas 17817  df-fg 17818  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cld 18626  df-ntr 18627  df-cls 18628  df-nei 18705  df-lp 18743  df-perf 18744  df-cn 18834  df-cnp 18835  df-haus 18922  df-cmp 18993  df-tx 19138  df-hmeo 19331  df-fil 19422  df-fm 19514  df-flim 19515  df-flf 19516  df-xms 19898  df-ms 19899  df-tms 19900  df-cncf 20457  df-limc 21344  df-dv 21345
This theorem is referenced by:  mvth  21467  lhop1lem  21488
  Copyright terms: Public domain W3C validator