Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtvalN Unicode version

Theorem cmtvalN 29694
Description: Equivalence for commutes relation. Definition of commutes in [Kalmbach] p. 20. (cmbr 23039 analog.) (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b  |-  B  =  ( Base `  K
)
cmtfval.j  |-  .\/  =  ( join `  K )
cmtfval.m  |-  ./\  =  ( meet `  K )
cmtfval.o  |-  ._|_  =  ( oc `  K )
cmtfval.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtvalN  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )

Proof of Theorem cmtvalN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmtfval.b . . . . . 6  |-  B  =  ( Base `  K
)
2 cmtfval.j . . . . . 6  |-  .\/  =  ( join `  K )
3 cmtfval.m . . . . . 6  |-  ./\  =  ( meet `  K )
4 cmtfval.o . . . . . 6  |-  ._|_  =  ( oc `  K )
5 cmtfval.c . . . . . 6  |-  C  =  ( cm `  K
)
61, 2, 3, 4, 5cmtfvalN 29693 . . . . 5  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
7 df-3an 938 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) )
87opabbii 4232 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }
96, 8syl6eq 2452 . . . 4  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
109breqd 4183 . . 3  |-  ( K  e.  A  ->  ( X C Y  <->  X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B )  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } Y ) )
11103ad2ant1 978 . 2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } Y ) )
12 df-br 4173 . . . 4  |-  ( X { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } Y  <->  <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } )
13 id 20 . . . . . 6  |-  ( x  =  X  ->  x  =  X )
14 oveq1 6047 . . . . . . 7  |-  ( x  =  X  ->  (
x  ./\  y )  =  ( X  ./\  y ) )
15 oveq1 6047 . . . . . . 7  |-  ( x  =  X  ->  (
x  ./\  (  ._|_  `  y ) )  =  ( X  ./\  (  ._|_  `  y ) ) )
1614, 15oveq12d 6058 . . . . . 6  |-  ( x  =  X  ->  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) )  =  ( ( X  ./\  y
)  .\/  ( X  ./\  (  ._|_  `  y ) ) ) )
1713, 16eqeq12d 2418 . . . . 5  |-  ( x  =  X  ->  (
x  =  ( ( x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) )  <->  X  =  (
( X  ./\  y
)  .\/  ( X  ./\  (  ._|_  `  y ) ) ) ) )
18 oveq2 6048 . . . . . . 7  |-  ( y  =  Y  ->  ( X  ./\  y )  =  ( X  ./\  Y
) )
19 fveq2 5687 . . . . . . . 8  |-  ( y  =  Y  ->  (  ._|_  `  y )  =  (  ._|_  `  Y ) )
2019oveq2d 6056 . . . . . . 7  |-  ( y  =  Y  ->  ( X  ./\  (  ._|_  `  y
) )  =  ( X  ./\  (  ._|_  `  Y ) ) )
2118, 20oveq12d 6058 . . . . . 6  |-  ( y  =  Y  ->  (
( X  ./\  y
)  .\/  ( X  ./\  (  ._|_  `  y ) ) )  =  ( ( X  ./\  Y
)  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) )
2221eqeq2d 2415 . . . . 5  |-  ( y  =  Y  ->  ( X  =  ( ( X  ./\  y )  .\/  ( X  ./\  (  ._|_  `  y ) ) )  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
2317, 22opelopab2 4435 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( <. X ,  Y >.  e.  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) }  <->  X  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) ) )
2412, 23syl5bb 249 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } Y  <->  X  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) ) )
25243adant1 975 . 2  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } Y  <->  X  =  ( ( X  ./\  Y )  .\/  ( X 
./\  (  ._|_  `  Y
) ) ) ) )
2611, 25bitrd 245 1  |-  ( ( K  e.  A  /\  X  e.  B  /\  Y  e.  B )  ->  ( X C Y  <-> 
X  =  ( ( X  ./\  Y )  .\/  ( X  ./\  (  ._|_  `  Y ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   <.cop 3777   class class class wbr 4172   {copab 4225   ` cfv 5413  (class class class)co 6040   Basecbs 13424   occoc 13492   joincjn 14356   meetcmee 14357   cmccmtN 29656
This theorem is referenced by:  cmtcomlemN  29731  cmt2N  29733  cmtbr2N  29736  cmtbr3N  29737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-iota 5377  df-fun 5415  df-fv 5421  df-ov 6043  df-cmtN 29660
  Copyright terms: Public domain W3C validator