Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtfvalN Structured version   Unicode version

Theorem cmtfvalN 34413
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b  |-  B  =  ( Base `  K
)
cmtfval.j  |-  .\/  =  ( join `  K )
cmtfval.m  |-  ./\  =  ( meet `  K )
cmtfval.o  |-  ._|_  =  ( oc `  K )
cmtfval.c  |-  C  =  ( cm `  K
)
Assertion
Ref Expression
cmtfvalN  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
Distinct variable groups:    x, y, B    x, K, y
Allowed substitution hints:    A( x, y)    C( x, y)    .\/ ( x, y)    ./\ (
x, y)    ._|_ ( x, y)

Proof of Theorem cmtfvalN
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 elex 3127 . 2  |-  ( K  e.  A  ->  K  e.  _V )
2 cmtfval.c . . 3  |-  C  =  ( cm `  K
)
3 fveq2 5872 . . . . . . . 8  |-  ( p  =  K  ->  ( Base `  p )  =  ( Base `  K
) )
4 cmtfval.b . . . . . . . 8  |-  B  =  ( Base `  K
)
53, 4syl6eqr 2526 . . . . . . 7  |-  ( p  =  K  ->  ( Base `  p )  =  B )
65eleq2d 2537 . . . . . 6  |-  ( p  =  K  ->  (
x  e.  ( Base `  p )  <->  x  e.  B ) )
75eleq2d 2537 . . . . . 6  |-  ( p  =  K  ->  (
y  e.  ( Base `  p )  <->  y  e.  B ) )
8 fveq2 5872 . . . . . . . . 9  |-  ( p  =  K  ->  ( join `  p )  =  ( join `  K
) )
9 cmtfval.j . . . . . . . . 9  |-  .\/  =  ( join `  K )
108, 9syl6eqr 2526 . . . . . . . 8  |-  ( p  =  K  ->  ( join `  p )  = 
.\/  )
11 fveq2 5872 . . . . . . . . . 10  |-  ( p  =  K  ->  ( meet `  p )  =  ( meet `  K
) )
12 cmtfval.m . . . . . . . . . 10  |-  ./\  =  ( meet `  K )
1311, 12syl6eqr 2526 . . . . . . . . 9  |-  ( p  =  K  ->  ( meet `  p )  = 
./\  )
1413oveqd 6312 . . . . . . . 8  |-  ( p  =  K  ->  (
x ( meet `  p
) y )  =  ( x  ./\  y
) )
15 eqidd 2468 . . . . . . . . 9  |-  ( p  =  K  ->  x  =  x )
16 fveq2 5872 . . . . . . . . . . 11  |-  ( p  =  K  ->  ( oc `  p )  =  ( oc `  K
) )
17 cmtfval.o . . . . . . . . . . 11  |-  ._|_  =  ( oc `  K )
1816, 17syl6eqr 2526 . . . . . . . . . 10  |-  ( p  =  K  ->  ( oc `  p )  = 
._|_  )
1918fveq1d 5874 . . . . . . . . 9  |-  ( p  =  K  ->  (
( oc `  p
) `  y )  =  (  ._|_  `  y
) )
2013, 15, 19oveq123d 6316 . . . . . . . 8  |-  ( p  =  K  ->  (
x ( meet `  p
) ( ( oc
`  p ) `  y ) )  =  ( x  ./\  (  ._|_  `  y ) ) )
2110, 14, 20oveq123d 6316 . . . . . . 7  |-  ( p  =  K  ->  (
( x ( meet `  p ) y ) ( join `  p
) ( x (
meet `  p )
( ( oc `  p ) `  y
) ) )  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) )
2221eqeq2d 2481 . . . . . 6  |-  ( p  =  K  ->  (
x  =  ( ( x ( meet `  p
) y ) (
join `  p )
( x ( meet `  p ) ( ( oc `  p ) `
 y ) ) )  <->  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) )
236, 7, 223anbi123d 1299 . . . . 5  |-  ( p  =  K  ->  (
( x  e.  (
Base `  p )  /\  y  e.  ( Base `  p )  /\  x  =  ( (
x ( meet `  p
) y ) (
join `  p )
( x ( meet `  p ) ( ( oc `  p ) `
 y ) ) ) )  <->  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) ) )
2423opabbidv 4516 . . . 4  |-  ( p  =  K  ->  { <. x ,  y >.  |  ( x  e.  ( Base `  p )  /\  y  e.  ( Base `  p
)  /\  x  =  ( ( x (
meet `  p )
y ) ( join `  p ) ( x ( meet `  p
) ( ( oc
`  p ) `  y ) ) ) ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) } )
25 df-cmtN 34380 . . . 4  |-  cm  =  ( p  e.  _V  |->  { <. x ,  y
>.  |  ( x  e.  ( Base `  p
)  /\  y  e.  ( Base `  p )  /\  x  =  (
( x ( meet `  p ) y ) ( join `  p
) ( x (
meet `  p )
( ( oc `  p ) `  y
) ) ) ) } )
26 df-3an 975 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) )
2726opabbii 4517 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  (
( x  ./\  y
)  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }
28 fvex 5882 . . . . . . . 8  |-  ( Base `  K )  e.  _V
294, 28eqeltri 2551 . . . . . . 7  |-  B  e. 
_V
3029, 29xpex 6599 . . . . . 6  |-  ( B  X.  B )  e. 
_V
31 opabssxp 5080 . . . . . 6  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) }  C_  ( B  X.  B )
3230, 31ssexi 4598 . . . . 5  |-  { <. x ,  y >.  |  ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  ( ( x  ./\  y )  .\/  (
x  ./\  (  ._|_  `  y ) ) ) ) }  e.  _V
3327, 32eqeltri 2551 . . . 4  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( (
x  ./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) }  e.  _V
3424, 25, 33fvmpt 5957 . . 3  |-  ( K  e.  _V  ->  ( cm `  K )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
352, 34syl5eq 2520 . 2  |-  ( K  e.  _V  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
361, 35syl 16 1  |-  ( K  e.  A  ->  C  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B  /\  x  =  ( ( x 
./\  y )  .\/  ( x  ./\  (  ._|_  `  y ) ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3118   {copab 4510    X. cxp 5003   ` cfv 5594  (class class class)co 6295   Basecbs 14506   occoc 14579   joincjn 15447   meetcmee 15448   cmccmtN 34376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6298  df-cmtN 34380
This theorem is referenced by:  cmtvalN  34414
  Copyright terms: Public domain W3C validator