MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Unicode version

Theorem cmphaushmeo 20750
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1  |-  X  = 
U. J
cmphaushmeo.2  |-  Y  = 
U. K
Assertion
Ref Expression
cmphaushmeo  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J Homeo K )  <->  F : X
-1-1-onto-> Y ) )

Proof of Theorem cmphaushmeo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3  |-  X  = 
U. J
2 cmphaushmeo.2 . . 3  |-  Y  = 
U. K
31, 2hmeof1o 20714 . 2  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )
4 f1ocnv 5843 . . . . . . . 8  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
5 f1of 5831 . . . . . . . 8  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
64, 5syl 17 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y --> X )
76a1i 11 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  `' F : Y --> X ) )
8 f1orel 5834 . . . . . . . . . . . 12  |-  ( F : X -1-1-onto-> Y  ->  Rel  F )
98ad2antll 733 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  Rel  F )
10 dfrel2 5306 . . . . . . . . . . 11  |-  ( Rel 
F  <->  `' `' F  =  F
)
119, 10sylib 199 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  `' `' F  =  F
)
1211imaeq1d 5187 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( `' `' F " x )  =  ( F " x ) )
13 simp2 1006 . . . . . . . . . . 11  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Haus )
1413adantr 466 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  K  e.  Haus )
15 imassrn 5199 . . . . . . . . . . 11  |-  ( F
" x )  C_  ran  F
16 f1ofo 5838 . . . . . . . . . . . . 13  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
1716ad2antll 733 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  F : X -onto-> Y )
18 forn 5813 . . . . . . . . . . . 12  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
1917, 18syl 17 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  ran  F  =  Y )
2015, 19syl5sseq 3518 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( F " x
)  C_  Y )
21 simpl3 1010 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  F  e.  ( J  Cn  K ) )
22 simp1 1005 . . . . . . . . . . . . 13  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  Comp )
2322adantr 466 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  J  e.  Comp )
24 simprl 762 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  x  e.  ( Clsd `  J ) )
25 cmpcld 20352 . . . . . . . . . . . 12  |-  ( ( J  e.  Comp  /\  x  e.  ( Clsd `  J
) )  ->  ( Jt  x )  e.  Comp )
2623, 24, 25syl2anc 665 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( Jt  x )  e.  Comp )
27 imacmp 20347 . . . . . . . . . . 11  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  x )  e.  Comp )  ->  ( Kt  ( F
" x ) )  e.  Comp )
2821, 26, 27syl2anc 665 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( Kt  ( F "
x ) )  e. 
Comp )
292hauscmp 20357 . . . . . . . . . 10  |-  ( ( K  e.  Haus  /\  ( F " x )  C_  Y  /\  ( Kt  ( F
" x ) )  e.  Comp )  ->  ( F " x )  e.  ( Clsd `  K
) )
3014, 20, 28, 29syl3anc 1264 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( F " x
)  e.  ( Clsd `  K ) )
3112, 30eqeltrd 2517 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( `' `' F " x )  e.  (
Clsd `  K )
)
3231expr 618 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  ( Clsd `  J
) )  ->  ( F : X -1-1-onto-> Y  ->  ( `' `' F " x )  e.  ( Clsd `  K
) ) )
3332ralrimdva 2850 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  A. x  e.  ( Clsd `  J
) ( `' `' F " x )  e.  ( Clsd `  K
) ) )
347, 33jcad 535 . . . . 5  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  ( `' F : Y --> X  /\  A. x  e.  ( Clsd `  J ) ( `' `' F " x )  e.  ( Clsd `  K
) ) ) )
35 haustop 20282 . . . . . . . 8  |-  ( K  e.  Haus  ->  K  e. 
Top )
3613, 35syl 17 . . . . . . 7  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
372toptopon 19883 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
3836, 37sylib 199 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  (TopOn `  Y )
)
39 cmptop 20345 . . . . . . . 8  |-  ( J  e.  Comp  ->  J  e. 
Top )
4022, 39syl 17 . . . . . . 7  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  Top )
411toptopon 19883 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
4240, 41sylib 199 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  X )
)
43 iscncl 20220 . . . . . 6  |-  ( ( K  e.  (TopOn `  Y )  /\  J  e.  (TopOn `  X )
)  ->  ( `' F  e.  ( K  Cn  J )  <->  ( `' F : Y --> X  /\  A. x  e.  ( Clsd `  J ) ( `' `' F " x )  e.  ( Clsd `  K
) ) ) )
4438, 42, 43syl2anc 665 . . . . 5  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( `' F  e.  ( K  Cn  J )  <->  ( `' F : Y --> X  /\  A. x  e.  ( Clsd `  J ) ( `' `' F " x )  e.  ( Clsd `  K
) ) ) )
4534, 44sylibrd 237 . . . 4  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  `' F  e.  ( K  Cn  J
) ) )
46 simp3 1007 . . . 4  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  K
) )
4745, 46jctild 545 . . 3  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) ) )
48 ishmeo 20709 . . 3  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
4947, 48syl6ibr 230 . 2  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  F  e.  ( J Homeo K ) ) )
503, 49impbid2 207 1  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J Homeo K )  <->  F : X
-1-1-onto-> Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   A.wral 2782    C_ wss 3442   U.cuni 4222   `'ccnv 4853   ran crn 4855   "cima 4857   Rel wrel 4859   -->wf 5597   -onto->wfo 5599   -1-1-onto->wf1o 5600   ` cfv 5601  (class class class)co 6305   ↾t crest 15282   Topctop 19852  TopOnctopon 19853   Clsdccld 19966    Cn ccn 20175   Hauscha 20259   Compccmp 20336   Homeochmeo 20703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-fin 7581  df-fi 7931  df-rest 15284  df-topgen 15305  df-top 19856  df-bases 19857  df-topon 19858  df-cld 19969  df-cls 19971  df-cn 20178  df-haus 20266  df-cmp 20337  df-hmeo 20705
This theorem is referenced by:  cncfcnvcn  21853
  Copyright terms: Public domain W3C validator