MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmphaushmeo Structured version   Visualization version   Unicode version

Theorem cmphaushmeo 20815
Description: A continuous bijection from a compact space to a Hausdorff space is a homeomorphism. (Contributed by Mario Carneiro, 17-Feb-2015.)
Hypotheses
Ref Expression
cmphaushmeo.1  |-  X  = 
U. J
cmphaushmeo.2  |-  Y  = 
U. K
Assertion
Ref Expression
cmphaushmeo  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J Homeo K )  <->  F : X
-1-1-onto-> Y ) )

Proof of Theorem cmphaushmeo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cmphaushmeo.1 . . 3  |-  X  = 
U. J
2 cmphaushmeo.2 . . 3  |-  Y  = 
U. K
31, 2hmeof1o 20779 . 2  |-  ( F  e.  ( J Homeo K )  ->  F : X
-1-1-onto-> Y )
4 f1ocnv 5826 . . . . . . . 8  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y -1-1-onto-> X )
5 f1of 5814 . . . . . . . 8  |-  ( `' F : Y -1-1-onto-> X  ->  `' F : Y --> X )
64, 5syl 17 . . . . . . 7  |-  ( F : X -1-1-onto-> Y  ->  `' F : Y --> X )
76a1i 11 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  `' F : Y --> X ) )
8 f1orel 5817 . . . . . . . . . . . 12  |-  ( F : X -1-1-onto-> Y  ->  Rel  F )
98ad2antll 735 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  Rel  F )
10 dfrel2 5286 . . . . . . . . . . 11  |-  ( Rel 
F  <->  `' `' F  =  F
)
119, 10sylib 200 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  `' `' F  =  F
)
1211imaeq1d 5167 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( `' `' F " x )  =  ( F " x ) )
13 simp2 1009 . . . . . . . . . . 11  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Haus )
1413adantr 467 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  K  e.  Haus )
15 imassrn 5179 . . . . . . . . . . 11  |-  ( F
" x )  C_  ran  F
16 f1ofo 5821 . . . . . . . . . . . . 13  |-  ( F : X -1-1-onto-> Y  ->  F : X -onto-> Y )
1716ad2antll 735 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  F : X -onto-> Y )
18 forn 5796 . . . . . . . . . . . 12  |-  ( F : X -onto-> Y  ->  ran  F  =  Y )
1917, 18syl 17 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  ran  F  =  Y )
2015, 19syl5sseq 3480 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( F " x
)  C_  Y )
21 simpl3 1013 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  F  e.  ( J  Cn  K ) )
22 simp1 1008 . . . . . . . . . . . . 13  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  Comp )
2322adantr 467 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  J  e.  Comp )
24 simprl 764 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  ->  x  e.  ( Clsd `  J ) )
25 cmpcld 20417 . . . . . . . . . . . 12  |-  ( ( J  e.  Comp  /\  x  e.  ( Clsd `  J
) )  ->  ( Jt  x )  e.  Comp )
2623, 24, 25syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( Jt  x )  e.  Comp )
27 imacmp 20412 . . . . . . . . . . 11  |-  ( ( F  e.  ( J  Cn  K )  /\  ( Jt  x )  e.  Comp )  ->  ( Kt  ( F
" x ) )  e.  Comp )
2821, 26, 27syl2anc 667 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( Kt  ( F "
x ) )  e. 
Comp )
292hauscmp 20422 . . . . . . . . . 10  |-  ( ( K  e.  Haus  /\  ( F " x )  C_  Y  /\  ( Kt  ( F
" x ) )  e.  Comp )  ->  ( F " x )  e.  ( Clsd `  K
) )
3014, 20, 28, 29syl3anc 1268 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( F " x
)  e.  ( Clsd `  K ) )
3112, 30eqeltrd 2529 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  (
x  e.  ( Clsd `  J )  /\  F : X -1-1-onto-> Y ) )  -> 
( `' `' F " x )  e.  (
Clsd `  K )
)
3231expr 620 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  /\  x  e.  ( Clsd `  J
) )  ->  ( F : X -1-1-onto-> Y  ->  ( `' `' F " x )  e.  ( Clsd `  K
) ) )
3332ralrimdva 2806 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  A. x  e.  ( Clsd `  J
) ( `' `' F " x )  e.  ( Clsd `  K
) ) )
347, 33jcad 536 . . . . 5  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  ( `' F : Y --> X  /\  A. x  e.  ( Clsd `  J ) ( `' `' F " x )  e.  ( Clsd `  K
) ) ) )
35 haustop 20347 . . . . . . . 8  |-  ( K  e.  Haus  ->  K  e. 
Top )
3613, 35syl 17 . . . . . . 7  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
372toptopon 19948 . . . . . . 7  |-  ( K  e.  Top  <->  K  e.  (TopOn `  Y ) )
3836, 37sylib 200 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  (TopOn `  Y )
)
39 cmptop 20410 . . . . . . . 8  |-  ( J  e.  Comp  ->  J  e. 
Top )
4022, 39syl 17 . . . . . . 7  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  Top )
411toptopon 19948 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
4240, 41sylib 200 . . . . . 6  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  (TopOn `  X )
)
43 iscncl 20285 . . . . . 6  |-  ( ( K  e.  (TopOn `  Y )  /\  J  e.  (TopOn `  X )
)  ->  ( `' F  e.  ( K  Cn  J )  <->  ( `' F : Y --> X  /\  A. x  e.  ( Clsd `  J ) ( `' `' F " x )  e.  ( Clsd `  K
) ) ) )
4438, 42, 43syl2anc 667 . . . . 5  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( `' F  e.  ( K  Cn  J )  <->  ( `' F : Y --> X  /\  A. x  e.  ( Clsd `  J ) ( `' `' F " x )  e.  ( Clsd `  K
) ) ) )
4534, 44sylibrd 238 . . . 4  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  `' F  e.  ( K  Cn  J
) ) )
46 simp3 1010 . . . 4  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  K
) )
4745, 46jctild 546 . . 3  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) ) )
48 ishmeo 20774 . . 3  |-  ( F  e.  ( J Homeo K )  <->  ( F  e.  ( J  Cn  K
)  /\  `' F  e.  ( K  Cn  J
) ) )
4947, 48syl6ibr 231 . 2  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F : X -1-1-onto-> Y  ->  F  e.  ( J Homeo K ) ) )
503, 49impbid2 208 1  |-  ( ( J  e.  Comp  /\  K  e.  Haus  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J Homeo K )  <->  F : X
-1-1-onto-> Y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   A.wral 2737    C_ wss 3404   U.cuni 4198   `'ccnv 4833   ran crn 4835   "cima 4837   Rel wrel 4839   -->wf 5578   -onto->wfo 5580   -1-1-onto->wf1o 5581   ` cfv 5582  (class class class)co 6290   ↾t crest 15319   Topctop 19917  TopOnctopon 19918   Clsdccld 20031    Cn ccn 20240   Hauscha 20324   Compccmp 20401   Homeochmeo 20768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-fin 7573  df-fi 7925  df-rest 15321  df-topgen 15342  df-top 19921  df-bases 19922  df-topon 19923  df-cld 20034  df-cls 20036  df-cn 20243  df-haus 20331  df-cmp 20402  df-hmeo 20770
This theorem is referenced by:  cncfcnvcn  21953
  Copyright terms: Public domain W3C validator