MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpfi Structured version   Visualization version   Unicode version

Theorem cmpfi 20500
Description: If a topology is compact and a collection of closed sets has the finite intersection property, its intersection is nonempty. (Contributed by Jeff Hankins, 25-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Assertion
Ref Expression
cmpfi  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
Distinct variable group:    x, J

Proof of Theorem cmpfi
Dummy variables  r 
v  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elpwi 3951 . . . 4  |-  ( y  e.  ~P J  -> 
y  C_  J )
2 0ss 3766 . . . . . . . . . . 11  |-  (/)  C_  y
3 0fin 7817 . . . . . . . . . . 11  |-  (/)  e.  Fin
4 elfpw 7894 . . . . . . . . . . 11  |-  ( (/)  e.  ( ~P y  i^i 
Fin )  <->  ( (/)  C_  y  /\  (/)  e.  Fin )
)
52, 3, 4mpbir2an 934 . . . . . . . . . 10  |-  (/)  e.  ( ~P y  i^i  Fin )
6 simprr 774 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  U. J  =  U. y )
7 simprl 772 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  -> 
y  =  (/) )
87unieqd 4200 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  U. y  =  U. (/) )
96, 8eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  U. J  =  U. (/) )
10 unieq 4198 . . . . . . . . . . . 12  |-  ( z  =  (/)  ->  U. z  =  U. (/) )
1110eqeq2d 2481 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( U. J  =  U. z  <->  U. J  =  U. (/) ) )
1211rspcev 3136 . . . . . . . . . 10  |-  ( (
(/)  e.  ( ~P y  i^i  Fin )  /\  U. J  =  U. (/) )  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )
135, 9, 12sylancr 676 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =  (/)  /\ 
U. J  =  U. y ) )  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )
1413expr 626 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( U. J  = 
U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z ) )
15 vn0 3730 . . . . . . . . . 10  |-  _V  =/=  (/)
16 iineq1 4284 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  |^|_ r  e.  y  ( U. J  \  r )  = 
|^|_ r  e.  (/)  ( U. J  \  r
) )
1716adantl 473 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^|_ r  e.  (/)  ( U. J  \  r ) )
18 0iin 4327 . . . . . . . . . . . . 13  |-  |^|_ r  e.  (/)  ( U. J  \  r )  =  _V
1917, 18syl6eq 2521 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  _V )
2019eqeq1d 2473 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  _V  =  (/) ) )
2120necon3bbid 2680 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( -.  |^|_ r  e.  y  ( U. J  \  r )  =  (/) 
<->  _V  =/=  (/) ) )
2215, 21mpbiri 241 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  ->  -.  |^|_ r  e.  y  ( U. J  \ 
r )  =  (/) )
2322pm2.21d 109 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  -> 
(/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) ) ) )
2414, 232thd 248 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =  (/) )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( |^|_ r  e.  y  ( U. J  \  r
)  =  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
25 uniss 4211 . . . . . . . . . . . 12  |-  ( y 
C_  J  ->  U. y  C_ 
U. J )
2625ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  ->  U. y  C_  U. J
)
27 eqss 3433 . . . . . . . . . . . 12  |-  ( U. y  =  U. J  <->  ( U. y  C_  U. J  /\  U. J  C_  U. y
) )
2827baib 919 . . . . . . . . . . 11  |-  ( U. y  C_  U. J  -> 
( U. y  = 
U. J  <->  U. J  C_  U. y ) )
2926, 28syl 17 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. y  = 
U. J  <->  U. J  C_  U. y ) )
30 eqcom 2478 . . . . . . . . . 10  |-  ( U. y  =  U. J  <->  U. J  = 
U. y )
31 ssdif0 3741 . . . . . . . . . 10  |-  ( U. J  C_  U. y  <->  ( U. J  \  U. y )  =  (/) )
3229, 30, 313bitr3g 295 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. J  = 
U. y  <->  ( U. J  \  U. y )  =  (/) ) )
33 iindif2 4338 . . . . . . . . . . . 12  |-  ( y  =/=  (/)  ->  |^|_ r  e.  y  ( U. J  \  r )  =  ( U. J  \  U_ r  e.  y  r
) )
3433adantl 473 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  ( U. J  \  U_ r  e.  y  r ) )
35 uniiun 4322 . . . . . . . . . . . 12  |-  U. y  =  U_ r  e.  y  r
3635difeq2i 3537 . . . . . . . . . . 11  |-  ( U. J  \  U. y )  =  ( U. J  \ 
U_ r  e.  y  r )
3734, 36syl6eqr 2523 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  ( U. J  \  U. y ) )
3837eqeq1d 2473 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  ( U. J  \  U. y
)  =  (/) ) )
3932, 38bitr4d 264 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. J  = 
U. y  <->  |^|_ r  e.  y  ( U. J  \  r )  =  (/) ) )
40 imassrn 5185 . . . . . . . . . . . 12  |-  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  C_  ran  ( r  e.  y  |->  ( U. J  \  r ) )
41 df-ima 4852 . . . . . . . . . . . . . 14  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  =  ran  (
( r  e.  J  |->  ( U. J  \ 
r ) )  |`  y )
42 resmpt 5160 . . . . . . . . . . . . . . . 16  |-  ( y 
C_  J  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) )  |`  y )  =  ( r  e.  y  |->  ( U. J  \  r
) ) )
4342adantl 473 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) )  |`  y )  =  ( r  e.  y  |->  ( U. J  \  r
) ) )
4443rneqd 5068 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  ran  ( ( r  e.  J  |->  ( U. J  \  r ) )  |`  y )  =  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
4541, 44syl5eq 2517 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
4645ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
4740, 46syl5sseqr 3467 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
48 funmpt 5625 . . . . . . . . . . . 12  |-  Fun  (
r  e.  y  |->  ( U. J  \  r
) )
49 elfpw 7894 . . . . . . . . . . . . . 14  |-  ( z  e.  ( ~P y  i^i  Fin )  <->  ( z  C_  y  /\  z  e. 
Fin ) )
5049simprbi 471 . . . . . . . . . . . . 13  |-  ( z  e.  ( ~P y  i^i  Fin )  ->  z  e.  Fin )
5150adantl 473 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
z  e.  Fin )
52 imafi 7885 . . . . . . . . . . . 12  |-  ( ( Fun  ( r  e.  y  |->  ( U. J  \  r ) )  /\  z  e.  Fin )  ->  ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  e.  Fin )
5348, 51, 52sylancr 676 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  e.  Fin )
54 elfpw 7894 . . . . . . . . . . 11  |-  ( ( ( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  i^i 
Fin )  <->  ( (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  /\  (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  e.  Fin ) )
5547, 53, 54sylanbrc 677 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ~P y  i^i 
Fin ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  i^i 
Fin ) )
56 eqid 2471 . . . . . . . . . . . . . . . . 17  |-  U. J  =  U. J
5756topopn 20013 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  U. J  e.  J )
58 difexg 4545 . . . . . . . . . . . . . . . 16  |-  ( U. J  e.  J  ->  ( U. J  \  r
)  e.  _V )
5957, 58syl 17 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  ( U. J  \  r
)  e.  _V )
6059ralrimivw 2810 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  A. r  e.  y  ( U. J  \  r )  e. 
_V )
61 eqid 2471 . . . . . . . . . . . . . . 15  |-  ( r  e.  y  |->  ( U. J  \  r ) )  =  ( r  e.  y  |->  ( U. J  \  r ) )
6261fnmpt 5714 . . . . . . . . . . . . . 14  |-  ( A. r  e.  y  ( U. J  \  r
)  e.  _V  ->  ( r  e.  y  |->  ( U. J  \  r
) )  Fn  y
)
6360, 62syl 17 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
r  e.  y  |->  ( U. J  \  r
) )  Fn  y
)
6463ad3antrrr 744 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  ( r  e.  y  |->  ( U. J  \  r ) )  Fn  y )
65 simpr 468 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  i^i 
Fin ) )
66 elfpw 7894 . . . . . . . . . . . . . . 15  |-  ( w  e.  ( ~P (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  i^i  Fin ) 
<->  ( w  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  /\  w  e.  Fin ) )
6765, 66sylib 201 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  ( w  C_  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  /\  w  e.  Fin ) )
6867simpld 466 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
6945ad2antrr 740 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  =  ran  (
r  e.  y  |->  ( U. J  \  r
) ) )
7068, 69sseqtrd 3454 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  C_  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
7167simprd 470 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  w  e.  Fin )
72 fipreima 7898 . . . . . . . . . . . 12  |-  ( ( ( r  e.  y 
|->  ( U. J  \ 
r ) )  Fn  y  /\  w  C_  ran  ( r  e.  y 
|->  ( U. J  \ 
r ) )  /\  w  e.  Fin )  ->  E. z  e.  ( ~P y  i^i  Fin ) ( ( r  e.  y  |->  ( U. J  \  r ) )
" z )  =  w )
7364, 70, 71, 72syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  E. z  e.  ( ~P y  i^i 
Fin ) ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  w )
74 eqcom 2478 . . . . . . . . . . . 12  |-  ( ( ( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =  w  <-> 
w  =  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
) )
7574rexbii 2881 . . . . . . . . . . 11  |-  ( E. z  e.  ( ~P y  i^i  Fin )
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  w  <->  E. z  e.  ( ~P y  i^i  Fin )
w  =  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
) )
7673, 75sylib 201 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin )
)  ->  E. z  e.  ( ~P y  i^i 
Fin ) w  =  ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
77 simpr 468 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  =  ( ( r  e.  y  |->  ( U. J  \  r ) )
" z ) )  ->  w  =  ( ( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z ) )
7877inteqd 4231 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  =  ( ( r  e.  y  |->  ( U. J  \  r ) )
" z ) )  ->  |^| w  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
7978eqeq2d 2481 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  w  =  ( ( r  e.  y  |->  ( U. J  \  r ) )
" z ) )  ->  ( (/)  =  |^| w 
<->  (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
) ) )
8055, 76, 79rexxfrd 4613 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin ) (/)  =  |^| w  <->  E. z  e.  ( ~P y  i^i 
Fin ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
81 0ex 4528 . . . . . . . . . 10  |-  (/)  e.  _V
82 imassrn 5185 . . . . . . . . . . . . 13  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  C_  ran  ( r  e.  J  |->  ( U. J  \  r ) )
83 eqid 2471 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  J  |->  ( U. J  \  r ) )  =  ( r  e.  J  |->  ( U. J  \  r ) )
8456, 83opncldf1 20177 . . . . . . . . . . . . . . . 16  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) : J -1-1-onto-> ( Clsd `  J
)  /\  `' (
r  e.  J  |->  ( U. J  \  r
) )  =  ( v  e.  ( Clsd `  J )  |->  ( U. J  \  v ) ) ) )
8584simpld 466 . . . . . . . . . . . . . . 15  |-  ( J  e.  Top  ->  (
r  e.  J  |->  ( U. J  \  r
) ) : J -1-1-onto-> ( Clsd `  J ) )
86 f1ofo 5835 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) : J -1-1-onto-> ( Clsd `  J )  -> 
( r  e.  J  |->  ( U. J  \ 
r ) ) : J -onto-> ( Clsd `  J
) )
8785, 86syl 17 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  (
r  e.  J  |->  ( U. J  \  r
) ) : J -onto->
( Clsd `  J )
)
88 forn 5809 . . . . . . . . . . . . . 14  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) : J -onto->
( Clsd `  J )  ->  ran  ( r  e.  J  |->  ( U. J  \  r ) )  =  ( Clsd `  J
) )
8987, 88syl 17 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  ran  ( r  e.  J  |->  ( U. J  \ 
r ) )  =  ( Clsd `  J
) )
9082, 89syl5sseq 3466 . . . . . . . . . . . 12  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  C_  ( Clsd `  J ) )
91 fvex 5889 . . . . . . . . . . . . 13  |-  ( Clsd `  J )  e.  _V
9291elpw2 4565 . . . . . . . . . . . 12  |-  ( ( ( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  e.  ~P ( Clsd `  J )  <->  ( ( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  C_  ( Clsd `  J ) )
9390, 92sylibr 217 . . . . . . . . . . 11  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  e.  ~P ( Clsd `  J )
)
9493ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  e.  ~P ( Clsd `  J )
)
95 elfi 7945 . . . . . . . . . 10  |-  ( (
(/)  e.  _V  /\  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  e.  ~P ( Clsd `  J )
)  ->  ( (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) )  <->  E. w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  i^i  Fin ) (/)  =  |^| w ) )
9681, 94, 95sylancr 676 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( (/)  e.  ( fi
`  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )  <->  E. w  e.  ( ~P ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  i^i  Fin ) (/)  =  |^| w
) )
97 inundif 3836 . . . . . . . . . . . . . 14  |-  ( ( ( ~P y  i^i 
Fin )  i^i  { (/)
} )  u.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) )  =  ( ~P y  i^i 
Fin )
9897rexeqi 2978 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( ( ~P y  i^i 
Fin )  i^i  { (/)
} )  u.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) ) U. J  =  U. z  <->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )
99 rexun 3605 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( ( ~P y  i^i 
Fin )  i^i  { (/)
} )  u.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) ) U. J  =  U. z  <->  ( E. z  e.  ( ( ~P y  i^i 
Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
) )
10098, 99bitr3i 259 . . . . . . . . . . . 12  |-  ( E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z 
<->  ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
) )
101 inss2 3644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ~P y  i^i  Fin )  i^i  { (/) } ) 
C_  { (/) }
102101sseli 3414 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
z  e.  { (/) } )
103 elsni 3985 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  { (/) }  ->  z  =  (/) )
104102, 103syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
z  =  (/) )
105104unieqd 4200 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  ->  U. z  =  U. (/) )
106 uni0 4217 . . . . . . . . . . . . . . . . . . 19  |-  U. (/)  =  (/)
107105, 106syl6eq 2521 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  ->  U. z  =  (/) )
108107eqeq2d 2481 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
( U. J  = 
U. z  <->  U. J  =  (/) ) )
109108biimpd 212 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } )  -> 
( U. J  = 
U. z  ->  U. J  =  (/) ) )
110109rexlimiv 2867 . . . . . . . . . . . . . . 15  |-  ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/) } ) U. J  =  U. z  ->  U. J  =  (/) )
111 ssid 3437 . . . . . . . . . . . . . . . . . . . 20  |-  y  C_  y
112111a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  C_  y
)
113 simprr 774 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. J  =  (/) )
114 0ss 3766 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  (/)  C_  U. y
115113, 114syl6eqss 3468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. J  C_  U. y
)
11625ad2antlr 741 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. y  C_  U. J
)
117115, 116eqssd 3435 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. J  =  U. y )
118117, 113eqtr3d 2507 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. y  =  (/) )
119118, 3syl6eqel 2557 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  U. y  e.  Fin )
120 pwfi 7887 . . . . . . . . . . . . . . . . . . . . 21  |-  ( U. y  e.  Fin  <->  ~P U. y  e.  Fin )
121119, 120sylib 201 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  ~P U. y  e.  Fin )
122 pwuni 4631 . . . . . . . . . . . . . . . . . . . 20  |-  y  C_  ~P U. y
123 ssfi 7810 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ~P U. y  e. 
Fin  /\  y  C_  ~P U. y )  -> 
y  e.  Fin )
124121, 122, 123sylancl 675 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  e.  Fin )
125 elfpw 7894 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( ~P y  i^i  Fin )  <->  ( y  C_  y  /\  y  e. 
Fin ) )
126112, 124, 125sylanbrc 677 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  e.  ( ~P y  i^i  Fin ) )
127 simprl 772 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  =/=  (/) )
128 eldifsn 4088 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  <->  ( y  e.  ( ~P y  i^i 
Fin )  /\  y  =/=  (/) ) )
129126, 127, 128sylanbrc 677 . . . . . . . . . . . . . . . . 17  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  y  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) )
130 unieq 4198 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  y  ->  U. z  =  U. y )
131130eqeq2d 2481 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  ( U. J  =  U. z 
<-> 
U. J  =  U. y ) )
132131rspcev 3136 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  /\  U. J  = 
U. y )  ->  E. z  e.  (
( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z )
133129, 117, 132syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  ( y  =/=  (/)  /\  U. J  =  (/) ) )  ->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z )
134133expr 626 . . . . . . . . . . . . . . 15  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( U. J  =  (/)  ->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z ) )
135110, 134syl5 32 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  ->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
136 idd 24 . . . . . . . . . . . . . 14  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z  ->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
137135, 136jaod 387 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
)  ->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
138 olc 391 . . . . . . . . . . . . 13  |-  ( E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z  ->  ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
) )
139137, 138impbid1 208 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( E. z  e.  ( ( ~P y  i^i  Fin )  i^i  { (/)
} ) U. J  =  U. z  \/  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) U. J  =  U. z
)  <->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) U. J  =  U. z ) )
140100, 139syl5bb 265 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z ) )
141 eldifi 3544 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  -> 
z  e.  ( ~P y  i^i  Fin )
)
142141adantl 473 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  e.  ( ~P y  i^i  Fin )
)
143142, 49sylib 201 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( z  C_  y  /\  z  e.  Fin ) )
144143simpld 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  C_  y )
145 simpllr 777 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
y  C_  J )
146144, 145sstrd 3428 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  C_  J )
147146unissd 4214 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  U. z  C_  U. J
)
148 eqss 3433 . . . . . . . . . . . . . . . 16  |-  ( U. z  =  U. J  <->  ( U. z  C_  U. J  /\  U. J  C_  U. z
) )
149148baib 919 . . . . . . . . . . . . . . 15  |-  ( U. z  C_  U. J  -> 
( U. z  = 
U. J  <->  U. J  C_  U. z ) )
150147, 149syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( U. z  = 
U. J  <->  U. J  C_  U. z ) )
151 eqcom 2478 . . . . . . . . . . . . . 14  |-  ( U. z  =  U. J  <->  U. J  = 
U. z )
152 ssdif0 3741 . . . . . . . . . . . . . . 15  |-  ( U. J  C_  U. z  <->  ( U. J  \  U. z )  =  (/) )
153 eqcom 2478 . . . . . . . . . . . . . . 15  |-  ( ( U. J  \  U. z )  =  (/)  <->  (/)  =  ( U. J  \  U. z ) )
154152, 153bitri 257 . . . . . . . . . . . . . 14  |-  ( U. J  C_  U. z  <->  (/)  =  ( U. J  \  U. z ) )
155150, 151, 1543bitr3g 295 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( U. J  = 
U. z  <->  (/)  =  ( U. J  \  U. z ) ) )
156 df-ima 4852 . . . . . . . . . . . . . . . . . 18  |-  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  ran  (
( r  e.  y 
|->  ( U. J  \ 
r ) )  |`  z )
157144resmptd 5162 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) )  |`  z )  =  ( r  e.  z  |->  ( U. J  \  r
) ) )
158157rneqd 5068 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  ran  ( ( r  e.  y  |->  ( U. J  \  r ) )  |`  z )  =  ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
159156, 158syl5eq 2517 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
160159inteqd 4231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  |^| ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
16159ralrimivw 2810 . . . . . . . . . . . . . . . . . 18  |-  ( J  e.  Top  ->  A. r  e.  z  ( U. J  \  r )  e. 
_V )
162161ad3antrrr 744 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  A. r  e.  z 
( U. J  \ 
r )  e.  _V )
163 dfiin3g 5094 . . . . . . . . . . . . . . . . 17  |-  ( A. r  e.  z  ( U. J  \  r
)  e.  _V  ->  |^|_ r  e.  z  ( U. J  \  r
)  =  |^| ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
164162, 163syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^|_ r  e.  z  ( U. J  \  r
)  =  |^| ran  ( r  e.  z 
|->  ( U. J  \ 
r ) ) )
165 eldifsn 4088 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  <->  ( z  e.  ( ~P y  i^i 
Fin )  /\  z  =/=  (/) ) )
166165simprbi 471 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } )  -> 
z  =/=  (/) )
167166adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
z  =/=  (/) )
168 iindif2 4338 . . . . . . . . . . . . . . . . 17  |-  ( z  =/=  (/)  ->  |^|_ r  e.  z  ( U. J  \  r )  =  ( U. J  \  U_ r  e.  z  r
) )
169167, 168syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^|_ r  e.  z  ( U. J  \  r
)  =  ( U. J  \  U_ r  e.  z  r ) )
170160, 164, 1693eqtr2d 2511 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  ( U. J  \  U_ r  e.  z  r
) )
171 uniiun 4322 . . . . . . . . . . . . . . . 16  |-  U. z  =  U_ r  e.  z  r
172171difeq2i 3537 . . . . . . . . . . . . . . 15  |-  ( U. J  \  U. z )  =  ( U. J  \ 
U_ r  e.  z  r )
173170, 172syl6eqr 2523 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  ->  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =  ( U. J  \  U. z ) )
174173eqeq2d 2481 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( (/)  =  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  <->  (/)  =  ( U. J  \  U. z ) ) )
175155, 174bitr4d 264 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Top  /\  y  C_  J )  /\  y  =/=  (/) )  /\  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) )  -> 
( U. J  = 
U. z  <->  (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
176175rexbidva 2889 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) U. J  =  U. z  <->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
177140, 176bitrd 261 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  E. z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
178 imaeq2 5170 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  (/)  ->  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  ( ( r  e.  y  |->  ( U. J  \  r
) ) " (/) ) )
179 ima0 5189 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  y  |->  ( U. J  \  r
) ) " (/) )  =  (/)
180178, 179syl6eq 2521 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  (/)  ->  ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  =  (/) )
181180inteqd 4231 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  (/)  ->  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =  |^| (/) )
182 int0 4240 . . . . . . . . . . . . . . . . . 18  |-  |^| (/)  =  _V
183181, 182syl6eq 2521 . . . . . . . . . . . . . . . . 17  |-  ( z  =  (/)  ->  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =  _V )
184183neeq1d 2702 . . . . . . . . . . . . . . . 16  |-  ( z  =  (/)  ->  ( |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z )  =/=  (/)  <->  _V  =/=  (/) ) )
18515, 184mpbiri 241 . . . . . . . . . . . . . . 15  |-  ( z  =  (/)  ->  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z )  =/=  (/) )
186185necomd 2698 . . . . . . . . . . . . . 14  |-  ( z  =  (/)  ->  (/)  =/=  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
187186necon2i 2677 . . . . . . . . . . . . 13  |-  ( (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) )
" z )  -> 
z  =/=  (/) )
188165rbaibr 921 . . . . . . . . . . . . 13  |-  ( z  =/=  (/)  ->  ( z  e.  ( ~P y  i^i 
Fin )  <->  z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} ) ) )
189187, 188syl 17 . . . . . . . . . . . 12  |-  ( (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) )
" z )  -> 
( z  e.  ( ~P y  i^i  Fin ) 
<->  z  e.  ( ( ~P y  i^i  Fin )  \  { (/) } ) ) )
190189pm5.32ri 650 . . . . . . . . . . 11  |-  ( ( z  e.  ( ~P y  i^i  Fin )  /\  (/)  =  |^| (
( r  e.  y 
|->  ( U. J  \ 
r ) ) "
z ) )  <->  ( z  e.  ( ( ~P y  i^i  Fin )  \  { (/)
} )  /\  (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
191190rexbii2 2879 . . . . . . . . . 10  |-  ( E. z  e.  ( ~P y  i^i  Fin ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r
) ) " z
)  <->  E. z  e.  ( ( ~P y  i^i 
Fin )  \  { (/)
} ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) )
192177, 191syl6bbr 271 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  E. z  e.  ( ~P y  i^i 
Fin ) (/)  =  |^| ( ( r  e.  y  |->  ( U. J  \  r ) ) "
z ) ) )
19380, 96, 1923bitr4rd 294 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z  <->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) )
19439, 193imbi12d 327 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  y  C_  J )  /\  y  =/=  (/) )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( |^|_ r  e.  y  ( U. J  \  r
)  =  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
19524, 194pm2.61dane 2730 . . . . . 6  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( |^|_ r  e.  y  ( U. J  \  r
)  =  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
19660adantr 472 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  A. r  e.  y 
( U. J  \ 
r )  e.  _V )
197 dfiin3g 5094 . . . . . . . . . . 11  |-  ( A. r  e.  y  ( U. J  \  r
)  e.  _V  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^| ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
198196, 197syl 17 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^| ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
19945inteqd 4231 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  |^| ran  ( r  e.  y 
|->  ( U. J  \ 
r ) ) )
200198, 199eqtr4d 2508 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  C_  J )  ->  |^|_ r  e.  y  ( U. J  \  r
)  =  |^| (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
201200eqeq1d 2473 . . . . . . . 8  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =  (/) ) )
202 nne 2647 . . . . . . . 8  |-  ( -. 
|^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  =/=  (/) 
<-> 
|^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  =  (/) )
203201, 202syl6bbr 271 . . . . . . 7  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( |^|_ r  e.  y  ( U. J  \ 
r )  =  (/)  <->  -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) )
204203imbi1d 324 . . . . . 6  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( |^|_ r  e.  y  ( U. J  \  r )  =  (/)  ->  (/)  e.  ( fi
`  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )  <->  ( -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
205195, 204bitrd 261 . . . . 5  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/)  ->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) ) )
206 con1b 340 . . . . 5  |-  ( ( -.  |^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y )  =/=  (/)  ->  (/)  e.  ( fi
`  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )  <->  ( -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  |^| (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y )  =/=  (/) ) )
207205, 206syl6bb 269 . . . 4  |-  ( ( J  e.  Top  /\  y  C_  J )  -> 
( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  ( -.  (/) 
e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
2081, 207sylan2 482 . . 3  |-  ( ( J  e.  Top  /\  y  e.  ~P J
)  ->  ( ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z )  <->  ( -.  (/) 
e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
209208ralbidva 2828 . 2  |-  ( J  e.  Top  ->  ( A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i 
Fin ) U. J  =  U. z )  <->  A. y  e.  ~P  J ( -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
21056iscmp 20480 . . 3  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) ) )
211210baib 919 . 2  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. y  e.  ~P  J ( U. J  =  U. y  ->  E. z  e.  ( ~P y  i^i  Fin ) U. J  =  U. z ) ) )
21293adantr 472 . . 3  |-  ( ( J  e.  Top  /\  y  e.  ~P J
)  ->  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  e.  ~P ( Clsd `  J ) )
213 simpl 464 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  J  e.  Top )
214 funmpt 5625 . . . . . 6  |-  Fun  (
r  e.  J  |->  ( U. J  \  r
) )
215214a1i 11 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  Fun  ( r  e.  J  |->  ( U. J  \  r ) ) )
216 elpwi 3951 . . . . . . 7  |-  ( x  e.  ~P ( Clsd `  J )  ->  x  C_  ( Clsd `  J
) )
217 foima 5811 . . . . . . . . 9  |-  ( ( r  e.  J  |->  ( U. J  \  r
) ) : J -onto->
( Clsd `  J )  ->  ( ( r  e.  J  |->  ( U. J  \  r ) ) " J )  =  (
Clsd `  J )
)
21887, 217syl 17 . . . . . . . 8  |-  ( J  e.  Top  ->  (
( r  e.  J  |->  ( U. J  \ 
r ) ) " J )  =  (
Clsd `  J )
)
219218sseq2d 3446 . . . . . . 7  |-  ( J  e.  Top  ->  (
x  C_  ( (
r  e.  J  |->  ( U. J  \  r
) ) " J
)  <->  x  C_  ( Clsd `  J ) ) )
220216, 219syl5ibr 229 . . . . . 6  |-  ( J  e.  Top  ->  (
x  e.  ~P ( Clsd `  J )  ->  x  C_  ( ( r  e.  J  |->  ( U. J  \  r ) )
" J ) ) )
221220imp 436 . . . . 5  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  x  C_  (
( r  e.  J  |->  ( U. J  \ 
r ) ) " J ) )
222 ssimaexg 5946 . . . . 5  |-  ( ( J  e.  Top  /\  Fun  ( r  e.  J  |->  ( U. J  \ 
r ) )  /\  x  C_  ( ( r  e.  J  |->  ( U. J  \  r ) )
" J ) )  ->  E. y ( y 
C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )
223213, 215, 221, 222syl3anc 1292 . . . 4  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  E. y ( y 
C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )
224 df-rex 2762 . . . . 5  |-  ( E. y  e.  ~P  J x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  <->  E. y ( y  e.  ~P J  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) ) )
225 selpw 3949 . . . . . . 7  |-  ( y  e.  ~P J  <->  y  C_  J )
226225anbi1i 709 . . . . . 6  |-  ( ( y  e.  ~P J  /\  x  =  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )  <->  ( y  C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) ) )
227226exbii 1726 . . . . 5  |-  ( E. y ( y  e. 
~P J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )  <->  E. y ( y  C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) ) )
228224, 227bitri 257 . . . 4  |-  ( E. y  e.  ~P  J x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
)  <->  E. y ( y 
C_  J  /\  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) ) )
229223, 228sylibr 217 . . 3  |-  ( ( J  e.  Top  /\  x  e.  ~P ( Clsd `  J ) )  ->  E. y  e.  ~P  J x  =  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) )
230 simpr 468 . . . . . . 7  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  x  =  ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )
231230fveq2d 5883 . . . . . 6  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( fi `  x )  =  ( fi `  (
( r  e.  J  |->  ( U. J  \ 
r ) ) "
y ) ) )
232231eleq2d 2534 . . . . 5  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( (/) 
e.  ( fi `  x )  <->  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) )
233232notbid 301 . . . 4  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( -.  (/)  e.  ( fi
`  x )  <->  -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
) ) ) )
234230inteqd 4231 . . . . 5  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  |^| x  =  |^| ( ( r  e.  J  |->  ( U. J  \  r ) )
" y ) )
235234neeq1d 2702 . . . 4  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  ( |^| x  =/=  (/)  <->  |^| ( ( r  e.  J  |->  ( U. J  \  r
) ) " y
)  =/=  (/) ) )
236233, 235imbi12d 327 . . 3  |-  ( ( J  e.  Top  /\  x  =  ( (
r  e.  J  |->  ( U. J  \  r
) ) " y
) )  ->  (
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) )  <->  ( -.  (/) 
e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
237212, 229, 236ralxfrd 4612 . 2  |-  ( J  e.  Top  ->  ( A. x  e.  ~P  ( Clsd `  J )
( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) )  <->  A. y  e.  ~P  J ( -.  (/)  e.  ( fi `  ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y ) )  ->  |^| ( ( r  e.  J  |->  ( U. J  \  r ) ) "
y )  =/=  (/) ) ) )
238209, 211, 2373bitr4d 293 1  |-  ( J  e.  Top  ->  ( J  e.  Comp  <->  A. x  e.  ~P  ( Clsd `  J
) ( -.  (/)  e.  ( fi `  x )  ->  |^| x  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   U.cuni 4190   |^|cint 4226   U_ciun 4269   |^|_ciin 4270    |-> cmpt 4454   `'ccnv 4838   ran crn 4840    |` cres 4841   "cima 4842   Fun wfun 5583    Fn wfn 5584   -onto->wfo 5587   -1-1-onto->wf1o 5588   ` cfv 5589   Fincfn 7587   ficfi 7942   Topctop 19994   Clsdccld 20108   Compccmp 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fi 7943  df-top 19998  df-cld 20111  df-cmp 20479
This theorem is referenced by:  cmpfii  20501  fclscmp  21123  heibor1lem  32205
  Copyright terms: Public domain W3C validator