MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcovf Structured version   Unicode version

Theorem cmpcovf 19650
Description: Combine cmpcov 19648 with ac6sfi 7753 to show the existence of a function that indexes the elements that are generating the open cover. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
iscmp.1  |-  X  = 
U. J
cmpcovf.2  |-  ( z  =  ( f `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cmpcovf  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
Distinct variable groups:    f, s, x, y, z, A    J, s, x, y, z    ph, f,
s, x    ps, s,
z    x, X, s
Allowed substitution hints:    ph( y, z)    ps( x, y, f)    J( f)    X( y, z, f)

Proof of Theorem cmpcovf
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  J  e.  Comp )
2 iscmp.1 . . 3  |-  X  = 
U. J
32cmpcov2 19649 . 2  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  E. u  e.  ( ~P J  i^i  Fin ) ( X  = 
U. u  /\  A. y  e.  u  E. z  e.  A  ph )
)
4 elfpw 7811 . . . 4  |-  ( u  e.  ( ~P J  i^i  Fin )  <->  ( u  C_  J  /\  u  e. 
Fin ) )
5 simplrl 759 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  C_  J )
6 selpw 4010 . . . . . . . 8  |-  ( u  e.  ~P J  <->  u  C_  J
)
75, 6sylibr 212 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  e.  ~P J )
8 simplrr 760 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  e.  Fin )
97, 8elind 3681 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  u  e.  ( ~P J  i^i  Fin ) )
10 simprl 755 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  X  =  U. u )
11 simprr 756 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  A. y  e.  u  E. z  e.  A  ph )
12 cmpcovf.2 . . . . . . . 8  |-  ( z  =  ( f `  y )  ->  ( ph 
<->  ps ) )
1312ac6sfi 7753 . . . . . . 7  |-  ( ( u  e.  Fin  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. f ( f : u --> A  /\  A. y  e.  u  ps ) )
148, 11, 13syl2anc 661 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  E. f
( f : u --> A  /\  A. y  e.  u  ps )
)
15 unieq 4246 . . . . . . . . 9  |-  ( s  =  u  ->  U. s  =  U. u )
1615eqeq2d 2474 . . . . . . . 8  |-  ( s  =  u  ->  ( X  =  U. s  <->  X  =  U. u ) )
17 feq2 5705 . . . . . . . . . 10  |-  ( s  =  u  ->  (
f : s --> A  <-> 
f : u --> A ) )
18 raleq 3051 . . . . . . . . . 10  |-  ( s  =  u  ->  ( A. y  e.  s  ps 
<-> 
A. y  e.  u  ps ) )
1917, 18anbi12d 710 . . . . . . . . 9  |-  ( s  =  u  ->  (
( f : s --> A  /\  A. y  e.  s  ps )  <->  ( f : u --> A  /\  A. y  e.  u  ps ) ) )
2019exbidv 1685 . . . . . . . 8  |-  ( s  =  u  ->  ( E. f ( f : s --> A  /\  A. y  e.  s  ps ) 
<->  E. f ( f : u --> A  /\  A. y  e.  u  ps ) ) )
2116, 20anbi12d 710 . . . . . . 7  |-  ( s  =  u  ->  (
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) )  <-> 
( X  =  U. u  /\  E. f ( f : u --> A  /\  A. y  e.  u  ps ) ) ) )
2221rspcev 3207 . . . . . 6  |-  ( ( u  e.  ( ~P J  i^i  Fin )  /\  ( X  =  U. u  /\  E. f ( f : u --> A  /\  A. y  e.  u  ps ) ) )  ->  E. s  e.  ( ~P J  i^i  Fin )
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
239, 10, 14, 22syl12anc 1221 . . . . 5  |-  ( ( ( J  e.  Comp  /\  ( u  C_  J  /\  u  e.  Fin ) )  /\  ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph ) )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
2423ex 434 . . . 4  |-  ( ( J  e.  Comp  /\  (
u  C_  J  /\  u  e.  Fin )
)  ->  ( ( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) ) )
254, 24sylan2b 475 . . 3  |-  ( ( J  e.  Comp  /\  u  e.  ( ~P J  i^i  Fin ) )  ->  (
( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. s  e.  ( ~P J  i^i  Fin )
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) ) )
2625rexlimdva 2948 . 2  |-  ( J  e.  Comp  ->  ( E. u  e.  ( ~P J  i^i  Fin )
( X  =  U. u  /\  A. y  e.  u  E. z  e.  A  ph )  ->  E. s  e.  ( ~P J  i^i  Fin )
( X  =  U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) ) )
271, 3, 26sylc 60 1  |-  ( ( J  e.  Comp  /\  A. x  e.  X  E. y  e.  J  (
x  e.  y  /\  E. z  e.  A  ph ) )  ->  E. s  e.  ( ~P J  i^i  Fin ) ( X  = 
U. s  /\  E. f ( f : s --> A  /\  A. y  e.  s  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374   E.wex 1591    e. wcel 1762   A.wral 2807   E.wrex 2808    i^i cin 3468    C_ wss 3469   ~Pcpw 4003   U.cuni 4238   -->wf 5575   ` cfv 5579   Fincfn 7506   Compccmp 19645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-om 6672  df-1o 7120  df-er 7301  df-en 7507  df-fin 7510  df-cmp 19646
This theorem is referenced by:  txtube  19869  txcmplem1  19870  txcmplem2  19871  xkococnlem  19888  cnheibor  21183  heicant  29613
  Copyright terms: Public domain W3C validator