MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcov Structured version   Unicode version

Theorem cmpcov 19004
Description: An open cover of a compact topology has a finite subcover. (Contributed by Jeff Hankins, 29-Jun-2009.)
Hypothesis
Ref Expression
iscmp.1  |-  X  = 
U. J
Assertion
Ref Expression
cmpcov  |-  ( ( J  e.  Comp  /\  S  C_  J  /\  X  = 
U. S )  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
)
Distinct variable groups:    J, s    S, s
Allowed substitution hint:    X( s)

Proof of Theorem cmpcov
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  S  C_  J )
2 ssexg 4450 . . . . . 6  |-  ( ( S  C_  J  /\  J  e.  Comp )  ->  S  e.  _V )
32ancoms 453 . . . . 5  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  S  e.  _V )
4 elpwg 3880 . . . . 5  |-  ( S  e.  _V  ->  ( S  e.  ~P J  <->  S 
C_  J ) )
53, 4syl 16 . . . 4  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  ( S  e.  ~P J  <->  S 
C_  J ) )
61, 5mpbird 232 . . 3  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  S  e.  ~P J )
7 iscmp.1 . . . . . 6  |-  X  = 
U. J
87iscmp 19003 . . . . 5  |-  ( J  e.  Comp  <->  ( J  e. 
Top  /\  A. r  e.  ~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
) ) )
98simprbi 464 . . . 4  |-  ( J  e.  Comp  ->  A. r  e.  ~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
) )
109adantr 465 . . 3  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  A. r  e.  ~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
) )
11 unieq 4111 . . . . . 6  |-  ( r  =  S  ->  U. r  =  U. S )
1211eqeq2d 2454 . . . . 5  |-  ( r  =  S  ->  ( X  =  U. r  <->  X  =  U. S ) )
13 pweq 3875 . . . . . . 7  |-  ( r  =  S  ->  ~P r  =  ~P S
)
1413ineq1d 3563 . . . . . 6  |-  ( r  =  S  ->  ( ~P r  i^i  Fin )  =  ( ~P S  i^i  Fin ) )
1514rexeqdv 2936 . . . . 5  |-  ( r  =  S  ->  ( E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s  <->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
) )
1612, 15imbi12d 320 . . . 4  |-  ( r  =  S  ->  (
( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s )  <->  ( X  =  U. S  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s ) ) )
1716rspcv 3081 . . 3  |-  ( S  e.  ~P J  -> 
( A. r  e. 
~P  J ( X  =  U. r  ->  E. s  e.  ( ~P r  i^i  Fin ) X  =  U. s
)  ->  ( X  =  U. S  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s ) ) )
186, 10, 17sylc 60 . 2  |-  ( ( J  e.  Comp  /\  S  C_  J )  ->  ( X  =  U. S  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
) )
19183impia 1184 1  |-  ( ( J  e.  Comp  /\  S  C_  J  /\  X  = 
U. S )  ->  E. s  e.  ( ~P S  i^i  Fin ) X  =  U. s
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728   _Vcvv 2984    i^i cin 3339    C_ wss 3340   ~Pcpw 3872   U.cuni 4103   Fincfn 7322   Topctop 18510   Compccmp 19001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ral 2732  df-rex 2733  df-rab 2736  df-v 2986  df-in 3347  df-ss 3354  df-pw 3874  df-uni 4104  df-cmp 19002
This theorem is referenced by:  cmpcov2  19005  cncmp  19007  discmp  19013  cmpcld  19017  sscmp  19020  alexsubALTlem1  19631  ptcmplem3  19638  lebnum  20548  comppfsc  28591  heibor1  28721
  Copyright terms: Public domain W3C validator