MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmpcld Structured version   Unicode version

Theorem cmpcld 20029
Description: A closed subset of a compact space is compact. (Contributed by Jeff Hankins, 29-Jun-2009.)
Assertion
Ref Expression
cmpcld  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  ( Jt  S )  e.  Comp )

Proof of Theorem cmpcld
Dummy variables  t 
s  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 selpw 4022 . . . 4  |-  ( s  e.  ~P J  <->  s  C_  J )
2 simp1l 1020 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  J  e.  Comp )
3 simp2 997 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
s  C_  J )
4 eqid 2457 . . . . . . . . . . . 12  |-  U. J  =  U. J
54cldopn 19659 . . . . . . . . . . 11  |-  ( S  e.  ( Clsd `  J
)  ->  ( U. J  \  S )  e.  J )
65adantl 466 . . . . . . . . . 10  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  ( U. J  \  S )  e.  J )
763ad2ant1 1017 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( U. J  \  S )  e.  J
)
87snssd 4177 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  { ( U. J  \  S ) }  C_  J )
93, 8unssd 3676 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( s  u.  {
( U. J  \  S ) } ) 
C_  J )
10 simp3 998 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  S  C_  U. s )
11 uniss 4272 . . . . . . . . . . . . . 14  |-  ( s 
C_  J  ->  U. s  C_ 
U. J )
12113ad2ant2 1018 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. s  C_  U. J
)
1310, 12sstrd 3509 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  S  C_  U. J )
14 undif 3911 . . . . . . . . . . . 12  |-  ( S 
C_  U. J  <->  ( S  u.  ( U. J  \  S ) )  = 
U. J )
1513, 14sylib 196 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( S  u.  ( U. J  \  S ) )  =  U. J
)
16 unss1 3669 . . . . . . . . . . . 12  |-  ( S 
C_  U. s  ->  ( S  u.  ( U. J  \  S ) ) 
C_  ( U. s  u.  ( U. J  \  S ) ) )
17163ad2ant3 1019 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( S  u.  ( U. J  \  S ) )  C_  ( U. s  u.  ( U. J  \  S ) ) )
1815, 17eqsstr3d 3534 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. J  C_  ( U. s  u.  ( U. J  \  S ) ) )
19 difss 3627 . . . . . . . . . . . 12  |-  ( U. J  \  S )  C_  U. J
2012, 19jctir 538 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( U. s  C_  U. J  /\  ( U. J  \  S )  C_  U. J ) )
21 unss 3674 . . . . . . . . . . 11  |-  ( ( U. s  C_  U. J  /\  ( U. J  \  S )  C_  U. J
)  <->  ( U. s  u.  ( U. J  \  S ) )  C_  U. J )
2220, 21sylib 196 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( U. s  u.  ( U. J  \  S ) )  C_  U. J )
2318, 22eqssd 3516 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. J  =  ( U. s  u.  ( U. J  \  S ) ) )
24 uniexg 6596 . . . . . . . . . . . . 13  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2524ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J )  ->  U. J  e.  _V )
26253adant3 1016 . . . . . . . . . . 11  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. J  e.  _V )
27 difexg 4604 . . . . . . . . . . 11  |-  ( U. J  e.  _V  ->  ( U. J  \  S
)  e.  _V )
28 unisng 4267 . . . . . . . . . . 11  |-  ( ( U. J  \  S
)  e.  _V  ->  U. { ( U. J  \  S ) }  =  ( U. J  \  S
) )
2926, 27, 283syl 20 . . . . . . . . . 10  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. { ( U. J  \  S ) }  =  ( U. J  \  S
) )
3029uneq2d 3654 . . . . . . . . 9  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( U. s  u. 
U. { ( U. J  \  S ) } )  =  ( U. s  u.  ( U. J  \  S ) ) )
3123, 30eqtr4d 2501 . . . . . . . 8  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. J  =  ( U. s  u.  U. {
( U. J  \  S ) } ) )
32 uniun 4270 . . . . . . . 8  |-  U. (
s  u.  { ( U. J  \  S
) } )  =  ( U. s  u. 
U. { ( U. J  \  S ) } )
3331, 32syl6eqr 2516 . . . . . . 7  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  U. J  =  U. ( s  u.  {
( U. J  \  S ) } ) )
344cmpcov 20016 . . . . . . 7  |-  ( ( J  e.  Comp  /\  (
s  u.  { ( U. J  \  S
) } )  C_  J  /\  U. J  = 
U. ( s  u. 
{ ( U. J  \  S ) } ) )  ->  E. u  e.  ( ~P ( s  u.  { ( U. J  \  S ) } )  i^i  Fin ) U. J  =  U. u )
352, 9, 33, 34syl3anc 1228 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  E. u  e.  ( ~P ( s  u.  {
( U. J  \  S ) } )  i^i  Fin ) U. J  =  U. u
)
36 elfpw 7840 . . . . . . . 8  |-  ( u  e.  ( ~P (
s  u.  { ( U. J  \  S
) } )  i^i 
Fin )  <->  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin ) )
37 simp2l 1022 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  u  C_  ( s  u. 
{ ( U. J  \  S ) } ) )
38 uncom 3644 . . . . . . . . . . . 12  |-  ( s  u.  { ( U. J  \  S ) } )  =  ( { ( U. J  \  S ) }  u.  s )
3937, 38syl6sseq 3545 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  u  C_  ( { ( U. J  \  S
) }  u.  s
) )
40 ssundif 3914 . . . . . . . . . . 11  |-  ( u 
C_  ( { ( U. J  \  S
) }  u.  s
)  <->  ( u  \  { ( U. J  \  S ) } ) 
C_  s )
4139, 40sylib 196 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  -> 
( u  \  {
( U. J  \  S ) } ) 
C_  s )
42 diffi 7770 . . . . . . . . . . . 12  |-  ( u  e.  Fin  ->  (
u  \  { ( U. J  \  S ) } )  e.  Fin )
4342ad2antll 728 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin ) )  ->  (
u  \  { ( U. J  \  S ) } )  e.  Fin )
44433adant3 1016 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  -> 
( u  \  {
( U. J  \  S ) } )  e.  Fin )
45 elfpw 7840 . . . . . . . . . 10  |-  ( ( u  \  { ( U. J  \  S
) } )  e.  ( ~P s  i^i 
Fin )  <->  ( (
u  \  { ( U. J  \  S ) } )  C_  s  /\  ( u  \  {
( U. J  \  S ) } )  e.  Fin ) )
4641, 44, 45sylanbrc 664 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  -> 
( u  \  {
( U. J  \  S ) } )  e.  ( ~P s  i^i  Fin ) )
47103ad2ant1 1017 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  S  C_  U. s )
48123ad2ant1 1017 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  U. s  C_  U. J
)
49 simp3 998 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  U. J  =  U. u )
5048, 49sseqtrd 3535 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  U. s  C_  U. u
)
5147, 50sstrd 3509 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  S  C_  U. u )
5251sselda 3499 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  v  e.  U. u
)
53 eluni 4254 . . . . . . . . . . . . . 14  |-  ( v  e.  U. u  <->  E. w
( v  e.  w  /\  w  e.  u
) )
5452, 53sylib 196 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  E. w ( v  e.  w  /\  w  e.  u ) )
55 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  w  /\  w  e.  u )  ->  v  e.  w )
5655a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  v  e.  w ) )
57 simpr 461 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  e.  w  /\  w  e.  u )  ->  w  e.  u )
5857a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  w  e.  u ) )
59 elndif 3624 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( v  e.  S  ->  -.  v  e.  ( U. J  \  S ) )
6059ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  /\  v  e.  w
)  ->  -.  v  e.  ( U. J  \  S ) )
61 eleq2 2530 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( U. J  \  S )  ->  (
v  e.  w  <->  v  e.  ( U. J  \  S
) ) )
6261biimpd 207 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( U. J  \  S )  ->  (
v  e.  w  -> 
v  e.  ( U. J  \  S ) ) )
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( w  =  ( U. J  \  S
)  ->  ( v  e.  w  ->  v  e.  ( U. J  \  S ) ) ) )
6463com23 78 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( v  e.  w  ->  ( w  =  ( U. J  \  S
)  ->  v  e.  ( U. J  \  S
) ) ) )
6564imp 429 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  /\  v  e.  w
)  ->  ( w  =  ( U. J  \  S )  ->  v  e.  ( U. J  \  S ) ) )
6660, 65mtod 177 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  /\  v  e.  w
)  ->  -.  w  =  ( U. J  \  S ) )
6766ex 434 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( v  e.  w  ->  -.  w  =  ( U. J  \  S
) ) )
6867adantrd 468 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  -.  w  =  ( U. J  \  S ) ) )
69 elsn 4046 . . . . . . . . . . . . . . . . . . 19  |-  ( w  e.  { ( U. J  \  S ) }  <-> 
w  =  ( U. J  \  S ) )
7069notbii 296 . . . . . . . . . . . . . . . . . 18  |-  ( -.  w  e.  { ( U. J  \  S
) }  <->  -.  w  =  ( U. J  \  S ) )
7168, 70syl6ibr 227 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  -.  w  e.  { ( U. J  \  S ) } ) )
7258, 71jcad 533 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  (
w  e.  u  /\  -.  w  e.  { ( U. J  \  S
) } ) ) )
73 eldif 3481 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( u  \  { ( U. J  \  S ) } )  <-> 
( w  e.  u  /\  -.  w  e.  {
( U. J  \  S ) } ) )
7472, 73syl6ibr 227 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  w  e.  ( u  \  {
( U. J  \  S ) } ) ) )
7556, 74jcad 533 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( ( v  e.  w  /\  w  e.  u )  ->  (
v  e.  w  /\  w  e.  ( u  \  { ( U. J  \  S ) } ) ) ) )
7675eximdv 1711 . . . . . . . . . . . . 13  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  ( E. w ( v  e.  w  /\  w  e.  u )  ->  E. w ( v  e.  w  /\  w  e.  ( u  \  {
( U. J  \  S ) } ) ) ) )
7754, 76mpd 15 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  /\  s  C_  J  /\  S  C_  U. s )  /\  (
u  C_  ( s  u.  { ( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  /\  v  e.  S )  ->  E. w ( v  e.  w  /\  w  e.  ( u  \  {
( U. J  \  S ) } ) ) )
7877ex 434 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  -> 
( v  e.  S  ->  E. w ( v  e.  w  /\  w  e.  ( u  \  {
( U. J  \  S ) } ) ) ) )
79 eluni 4254 . . . . . . . . . . 11  |-  ( v  e.  U. ( u 
\  { ( U. J  \  S ) } )  <->  E. w ( v  e.  w  /\  w  e.  ( u  \  {
( U. J  \  S ) } ) ) )
8078, 79syl6ibr 227 . . . . . . . . . 10  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  -> 
( v  e.  S  ->  v  e.  U. (
u  \  { ( U. J  \  S ) } ) ) )
8180ssrdv 3505 . . . . . . . . 9  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  S  C_  U. ( u 
\  { ( U. J  \  S ) } ) )
82 unieq 4259 . . . . . . . . . . 11  |-  ( t  =  ( u  \  { ( U. J  \  S ) } )  ->  U. t  =  U. ( u  \  { ( U. J  \  S
) } ) )
8382sseq2d 3527 . . . . . . . . . 10  |-  ( t  =  ( u  \  { ( U. J  \  S ) } )  ->  ( S  C_  U. t  <->  S  C_  U. (
u  \  { ( U. J  \  S ) } ) ) )
8483rspcev 3210 . . . . . . . . 9  |-  ( ( ( u  \  {
( U. J  \  S ) } )  e.  ( ~P s  i^i  Fin )  /\  S  C_ 
U. ( u  \  { ( U. J  \  S ) } ) )  ->  E. t  e.  ( ~P s  i^i 
Fin ) S  C_  U. t )
8546, 81, 84syl2anc 661 . . . . . . . 8  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  ( u  C_  ( s  u.  {
( U. J  \  S ) } )  /\  u  e.  Fin )  /\  U. J  = 
U. u )  ->  E. t  e.  ( ~P s  i^i  Fin ) S  C_  U. t )
8636, 85syl3an2b 1265 . . . . . . 7  |-  ( ( ( ( J  e. 
Comp  /\  S  e.  (
Clsd `  J )
)  /\  s  C_  J  /\  S  C_  U. s
)  /\  u  e.  ( ~P ( s  u. 
{ ( U. J  \  S ) } )  i^i  Fin )  /\  U. J  =  U. u
)  ->  E. t  e.  ( ~P s  i^i 
Fin ) S  C_  U. t )
8786rexlimdv3a 2951 . . . . . 6  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  -> 
( E. u  e.  ( ~P ( s  u.  { ( U. J  \  S ) } )  i^i  Fin ) U. J  =  U. u  ->  E. t  e.  ( ~P s  i^i  Fin ) S  C_  U. t
) )
8835, 87mpd 15 . . . . 5  |-  ( ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J ) )  /\  s  C_  J  /\  S  C_ 
U. s )  ->  E. t  e.  ( ~P s  i^i  Fin ) S  C_  U. t )
89883exp 1195 . . . 4  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  (
s  C_  J  ->  ( S  C_  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) S  C_  U. t
) ) )
901, 89syl5bi 217 . . 3  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  (
s  e.  ~P J  ->  ( S  C_  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) S  C_  U. t
) ) )
9190ralrimiv 2869 . 2  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  A. s  e.  ~P  J ( S 
C_  U. s  ->  E. t  e.  ( ~P s  i^i 
Fin ) S  C_  U. t ) )
92 cmptop 20022 . . 3  |-  ( J  e.  Comp  ->  J  e. 
Top )
934cldss 19657 . . 3  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
944cmpsub 20027 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( Jt  S )  e.  Comp  <->  A. s  e.  ~P  J ( S 
C_  U. s  ->  E. t  e.  ( ~P s  i^i 
Fin ) S  C_  U. t ) ) )
9592, 93, 94syl2an 477 . 2  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  (
( Jt  S )  e.  Comp  <->  A. s  e.  ~P  J
( S  C_  U. s  ->  E. t  e.  ( ~P s  i^i  Fin ) S  C_  U. t
) ) )
9691, 95mpbird 232 1  |-  ( ( J  e.  Comp  /\  S  e.  ( Clsd `  J
) )  ->  ( Jt  S )  e.  Comp )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395   E.wex 1613    e. wcel 1819   A.wral 2807   E.wrex 2808   _Vcvv 3109    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   {csn 4032   U.cuni 4251   ` cfv 5594  (class class class)co 6296   Fincfn 7535   ↾t crest 14838   Topctop 19521   Clsdccld 19644   Compccmp 20013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-en 7536  df-dom 7537  df-fin 7539  df-fi 7889  df-rest 14840  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cld 19647  df-cmp 20014
This theorem is referenced by:  hausllycmp  20121  cldllycmp  20122  txkgen  20279  cmphaushmeo  20427  cnheiborlem  21580  cmpcmet  21882  stoweidlem28  32013  stoweidlem50  32035  stoweidlem57  32042
  Copyright terms: Public domain W3C validator