MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmn4 Structured version   Unicode version

Theorem cmn4 16632
Description: Commutative/associative law for Abelian groups. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
cmn4  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( Z  .+  W ) )  =  ( ( X  .+  Z )  .+  ( Y  .+  W ) ) )

Proof of Theorem cmn4
StepHypRef Expression
1 ablcom.b . 2  |-  B  =  ( Base `  G
)
2 ablcom.p . 2  |-  .+  =  ( +g  `  G )
3 simp1 996 . . 3  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e. CMnd )
4 cmnmnd 16628 . . 3  |-  ( G  e. CMnd  ->  G  e.  Mnd )
53, 4syl 16 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  G  e.  Mnd )
6 simp2l 1022 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  X  e.  B )
7 simp2r 1023 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Y  e.  B )
8 simp3l 1024 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  Z  e.  B )
9 simp3r 1025 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  W  e.  B )
101, 2cmncom 16629 . . 3  |-  ( ( G  e. CMnd  /\  Y  e.  B  /\  Z  e.  B )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
113, 7, 8, 10syl3anc 1228 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  ( Y  .+  Z )  =  ( Z  .+  Y
) )
121, 2, 5, 6, 7, 8, 9, 11mnd4g 15746 1  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )  /\  ( Z  e.  B  /\  W  e.  B
) )  ->  (
( X  .+  Y
)  .+  ( Z  .+  W ) )  =  ( ( X  .+  Z )  .+  ( Y  .+  W ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   ` cfv 5588  (class class class)co 6285   Basecbs 14493   +g cplusg 14558   Mndcmnd 15729  CMndccmn 16613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576  ax-pow 4625
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-iota 5551  df-fv 5596  df-ov 6288  df-mnd 15735  df-cmn 16615
This theorem is referenced by:  ablsub4  16638  ghmplusg  16667  lmod4  17372  evlslem1  17995  ip2di  18483  lfladdcl  34085
  Copyright terms: Public domain W3C validator