MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmn12 Structured version   Unicode version

Theorem cmn12 16410
Description: Commutative/associative law for Abelian monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
cmn12  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .+  ( Y  .+  Z
) )  =  ( Y  .+  ( X 
.+  Z ) ) )

Proof of Theorem cmn12
StepHypRef Expression
1 ablcom.b . 2  |-  B  =  ( Base `  G
)
2 ablcom.p . 2  |-  .+  =  ( +g  `  G )
3 cmnmnd 16405 . . 3  |-  ( G  e. CMnd  ->  G  e.  Mnd )
43adantr 465 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  G  e.  Mnd )
5 simpr1 994 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  X  e.  B )
6 simpr2 995 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Y  e.  B )
7 simpr3 996 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  Z  e.  B )
81, 2cmncom 16406 . . 3  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
983adant3r3 1199 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
101, 2, 4, 5, 6, 7, 9mnd12g 15536 1  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .+  ( Y  .+  Z
) )  =  ( Y  .+  ( X 
.+  Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   ` cfv 5519  (class class class)co 6193   Basecbs 14285   +g cplusg 14349   Mndcmnd 15520  CMndccmn 16390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-nul 4522  ax-pow 4571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-iota 5482  df-fv 5527  df-ov 6196  df-mnd 15526  df-cmn 16392
This theorem is referenced by:  sraassa  17511  mamuvs2  18428  mdetuni0  18552
  Copyright terms: Public domain W3C validator