MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Structured version   Unicode version

Theorem cmetss 20847
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cmetss.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
cmetss  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )

Proof of Theorem cmetss
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 20819 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 metxmet 19931 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 16 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( *Met `  X
) )
43adantr 465 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  D  e.  ( *Met `  X ) )
5 cmetss.2 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
65mopntopon 20036 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 16 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  (TopOn `  X )
)
8 resss 5155 . . . . . . . 8  |-  ( D  |`  ( Y  X.  Y
) )  C_  D
9 dmss 5060 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  C_  D  ->  dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  D )
10 dmss 5060 . . . . . . . 8  |-  ( dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  D  ->  dom 
dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  dom 
D )
118, 9, 10mp2b 10 . . . . . . 7  |-  dom  dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  dom  D
12 cmetmet 20819 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
13 metdmdm 19933 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
1412, 13syl 16 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
15 metdmdm 19933 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  X  =  dom  dom  D )
161, 15syl 16 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  X  =  dom  dom  D )
17 sseq12 3400 . . . . . . . 8  |-  ( ( Y  =  dom  dom  ( D  |`  ( Y  X.  Y ) )  /\  X  =  dom  dom 
D )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1814, 16, 17syl2anr 478 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1911, 18mpbiri 233 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_  X )
20 flimcls 19580 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
217, 19, 20syl2anc 661 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
22 simprrr 764 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  ( J  fLim  f ) )
234adantr 465 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  D  e.  ( *Met `  X
) )
245methaus 20117 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
25 hausflimi 19575 . . . . . . . . 9  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
2623, 24, 253syl 20 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E* x  x  e.  ( J  fLim  f ) )
2723, 6syl 16 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  ( Fil `  X ) )
29 simprrl 763 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  e.  f )
30 flimrest 19578 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  Y  e.  f )  ->  (
( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3127, 28, 29, 30syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3219adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  C_  X
)
33 eqid 2443 . . . . . . . . . . . . . 14  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
34 eqid 2443 . . . . . . . . . . . . . 14  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3533, 5, 34metrest 20121 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3623, 32, 35syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3736oveq1d 6127 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( ft  Y ) ) )
3831, 37eqtr3d 2477 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) ) )
39 simplr 754 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  (
CMet `  Y )
)
405flimcfil 20846 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ( J  fLim  f )
)  ->  f  e.  (CauFil `  D ) )
4123, 22, 40syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  (CauFil `  D ) )
42 cfilres 20829 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  f  e.  ( Fil `  X )  /\  Y  e.  f )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4323, 28, 29, 42syl3anc 1218 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4441, 43mpbid 210 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
4534cmetcvg 20818 . . . . . . . . . . 11  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4639, 44, 45syl2anc 661 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4738, 46eqnetrd 2654 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =/=  (/) )
48 n0 3667 . . . . . . . . . 10  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x  x  e.  ( ( J  fLim  f )  i^i  Y ) )
49 elin 3560 . . . . . . . . . . 11  |-  ( x  e.  ( ( J 
fLim  f )  i^i 
Y )  <->  ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5049exbii 1634 . . . . . . . . . 10  |-  ( E. x  x  e.  ( ( J  fLim  f
)  i^i  Y )  <->  E. x ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5148, 50bitri 249 . . . . . . . . 9  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x ( x  e.  ( J  fLim  f )  /\  x  e.  Y ) )
5247, 51sylib 196 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )
53 mopick 2339 . . . . . . . 8  |-  ( ( E* x  x  e.  ( J  fLim  f
)  /\  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )  ->  (
x  e.  ( J 
fLim  f )  ->  x  e.  Y )
)
5426, 52, 53syl2anc 661 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  ->  x  e.  Y ) )
5522, 54mpd 15 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  Y )
5655rexlimdvaa 2863 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( E. f  e.  ( Fil `  X ) ( Y  e.  f  /\  x  e.  ( J  fLim  f ) )  ->  x  e.  Y )
)
5721, 56sylbid 215 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  ->  x  e.  Y )
)
5857ssrdv 3383 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
( cls `  J
) `  Y )  C_  Y )
595mopntop 20037 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
604, 59syl 16 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  Top )
615mopnuni 20038 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
624, 61syl 16 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  X  =  U. J )
6319, 62sseqtrd 3413 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_ 
U. J )
64 eqid 2443 . . . . 5  |-  U. J  =  U. J
6564iscld4 18691 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  U. J )  ->  ( Y  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  Y
)  C_  Y )
)
6660, 63, 65syl2anc 661 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  Y )  C_  Y
) )
6758, 66mpbird 232 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  e.  ( Clsd `  J
) )
681adantr 465 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( Met `  X
) )
6964cldss 18655 . . . . . 6  |-  ( Y  e.  ( Clsd `  J
)  ->  Y  C_  U. J
)
7069adantl 466 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_ 
U. J )
7168, 2, 613syl 20 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  X  =  U. J )
7270, 71sseqtr4d 3414 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_  X )
73 metres2 19960 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
7468, 72, 73syl2anc 661 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
753ad2antrr 725 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( *Met `  X ) )
7672adantr 465 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  C_  X )
7775, 76, 35syl2anc 661 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
7877eqcomd 2448 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
79 metxmet 19931 . . . . . . . . . . 11  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
8074, 79syl 16 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y ) )
81 cfilfil 20800 . . . . . . . . . 10  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  f  e.  ( Fil `  Y ) )
8280, 81sylan 471 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( Fil `  Y
) )
83 elfvdm 5737 . . . . . . . . . 10  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
8483ad2antrr 725 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  X  e.  dom  CMet )
85 trfg 19486 . . . . . . . . 9  |-  ( ( f  e.  ( Fil `  Y )  /\  Y  C_  X  /\  X  e. 
dom  CMet )  ->  (
( X filGen f )t  Y )  =  f )
8682, 76, 84, 85syl3anc 1218 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( X filGen f )t  Y )  =  f )
8786eqcomd 2448 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  =  ( ( X
filGen f )t  Y ) )
8878, 87oveq12d 6130 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( ( Jt  Y )  fLim  (
( X filGen f )t  Y ) ) )
8975, 6syl 16 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  J  e.  (TopOn `  X )
)
90 filfbas 19443 . . . . . . . . . 10  |-  ( f  e.  ( Fil `  Y
)  ->  f  e.  ( fBas `  Y )
)
9182, 90syl 16 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  Y
) )
92 filsspw 19446 . . . . . . . . . . 11  |-  ( f  e.  ( Fil `  Y
)  ->  f  C_  ~P Y )
9382, 92syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P Y )
94 sspwb 4562 . . . . . . . . . . 11  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
9576, 94sylib 196 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ~P Y  C_  ~P X )
9693, 95sstrd 3387 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P X )
97 fbasweak 19460 . . . . . . . . 9  |-  ( ( f  e.  ( fBas `  Y )  /\  f  C_ 
~P X  /\  X  e.  dom  CMet )  ->  f  e.  ( fBas `  X
) )
9891, 96, 84, 97syl3anc 1218 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  X
) )
99 fgcl 19473 . . . . . . . 8  |-  ( f  e.  ( fBas `  X
)  ->  ( X filGen f )  e.  ( Fil `  X ) )
10098, 99syl 16 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  ( Fil `  X
) )
101 ssfg 19467 . . . . . . . . 9  |-  ( f  e.  ( fBas `  X
)  ->  f  C_  ( X filGen f ) )
10298, 101syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_  ( X filGen f ) )
103 filtop 19450 . . . . . . . . 9  |-  ( f  e.  ( Fil `  Y
)  ->  Y  e.  f )
10482, 103syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  f )
105102, 104sseldd 3378 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  ( X filGen f ) )
106 flimrest 19578 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen f )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen f ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i 
Y ) )
10789, 100, 105, 106syl3anc 1218 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( Jt  Y )  fLim  (
( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i  Y ) )
108 flimclsi 19573 . . . . . . . . 9  |-  ( Y  e.  ( X filGen f )  ->  ( J  fLim  ( X filGen f ) )  C_  ( ( cls `  J ) `  Y ) )
109105, 108syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  (
( cls `  J
) `  Y )
)
110 cldcls 18668 . . . . . . . . 9  |-  ( Y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  Y )  =  Y )
111110ad2antlr 726 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( cls `  J
) `  Y )  =  Y )
112109, 111sseqtrd 3413 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  Y
)
113 df-ss 3363 . . . . . . 7  |-  ( ( J  fLim  ( X filGen f ) )  C_  Y 
<->  ( ( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
114112, 113sylib 196 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
11588, 107, 1143eqtrd 2479 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( J 
fLim  ( X filGen f ) ) )
116 simpll 753 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( CMet `  X
) )
11768, 2syl 16 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( *Met `  X ) )
118 cfilresi 20828 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
119117, 118sylan 471 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
1205cmetcvg 20818 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( X filGen f )  e.  (CauFil `  D )
)  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
121116, 119, 120syl2anc 661 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
122115, 121eqnetrd 2654 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
123122ralrimiva 2820 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
12434iscmet 20817 . . 3  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  ( ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y )  /\  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) ) )
12574, 123, 124sylanbrc 664 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
12667, 125impbida 828 1  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   E*wmo 2254    =/= wne 2620   A.wral 2736   E.wrex 2737    i^i cin 3348    C_ wss 3349   (/)c0 3658   ~Pcpw 3881   U.cuni 4112    X. cxp 4859   dom cdm 4861    |` cres 4863   ` cfv 5439  (class class class)co 6112   ↾t crest 14380   *Metcxmt 17823   Metcme 17824   fBascfbas 17826   filGencfg 17827   MetOpencmopn 17828   Topctop 18520  TopOnctopon 18521   Clsdccld 18642   clsccl 18644   Hauscha 18934   Filcfil 19440    fLim cflim 19529  CauFilccfil 20785   CMetcms 20787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-oadd 6945  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fi 7682  df-sup 7712  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ico 11327  df-icc 11328  df-rest 14382  df-topgen 14403  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-fbas 17836  df-fg 17837  df-top 18525  df-bases 18527  df-topon 18528  df-cld 18645  df-ntr 18646  df-cls 18647  df-nei 18724  df-haus 18941  df-fil 19441  df-flim 19534  df-cfil 20788  df-cmet 20790
This theorem is referenced by:  recmet  20856  cmsss  20883  bnsscmcl  24291  rrnheibor  28762
  Copyright terms: Public domain W3C validator