MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetss Structured version   Unicode version

Theorem cmetss 21580
Description: A subspace of a complete metric space is complete iff it is closed in the parent space. Theorem 1.4-7 of [Kreyszig] p. 30. (Contributed by NM, 28-Jan-2008.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
cmetss.2  |-  J  =  ( MetOpen `  D )
Assertion
Ref Expression
cmetss  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )

Proof of Theorem cmetss
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetmet 21552 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
2 metxmet 20664 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
31, 2syl 16 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( *Met `  X
) )
43adantr 465 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  D  e.  ( *Met `  X ) )
5 cmetss.2 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
65mopntopon 20769 . . . . . . 7  |-  ( D  e.  ( *Met `  X )  ->  J  e.  (TopOn `  X )
)
74, 6syl 16 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  (TopOn `  X )
)
8 resss 5297 . . . . . . . 8  |-  ( D  |`  ( Y  X.  Y
) )  C_  D
9 dmss 5202 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  C_  D  ->  dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  D )
10 dmss 5202 . . . . . . . 8  |-  ( dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  D  ->  dom 
dom  ( D  |`  ( Y  X.  Y
) )  C_  dom  dom 
D )
118, 9, 10mp2b 10 . . . . . . 7  |-  dom  dom  ( D  |`  ( Y  X.  Y ) ) 
C_  dom  dom  D
12 cmetmet 21552 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y ) )
13 metdmdm 20666 . . . . . . . . 9  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
1412, 13syl 16 . . . . . . . 8  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  ->  Y  =  dom  dom  ( D  |`  ( Y  X.  Y
) ) )
15 metdmdm 20666 . . . . . . . . 9  |-  ( D  e.  ( Met `  X
)  ->  X  =  dom  dom  D )
161, 15syl 16 . . . . . . . 8  |-  ( D  e.  ( CMet `  X
)  ->  X  =  dom  dom  D )
17 sseq12 3527 . . . . . . . 8  |-  ( ( Y  =  dom  dom  ( D  |`  ( Y  X.  Y ) )  /\  X  =  dom  dom 
D )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1814, 16, 17syl2anr 478 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  C_  X  <->  dom  dom  ( D  |`  ( Y  X.  Y ) )  C_  dom  dom  D ) )
1911, 18mpbiri 233 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_  X )
20 flimcls 20313 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
217, 19, 20syl2anc 661 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  <->  E. f  e.  ( Fil `  X
) ( Y  e.  f  /\  x  e.  ( J  fLim  f
) ) ) )
22 simprrr 764 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  ( J  fLim  f ) )
234adantr 465 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  D  e.  ( *Met `  X
) )
245methaus 20850 . . . . . . . . 9  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Haus )
25 hausflimi 20308 . . . . . . . . 9  |-  ( J  e.  Haus  ->  E* x  x  e.  ( J  fLim  f ) )
2623, 24, 253syl 20 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E* x  x  e.  ( J  fLim  f ) )
2723, 6syl 16 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  J  e.  (TopOn `  X ) )
28 simprl 755 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  ( Fil `  X ) )
29 simprrl 763 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  e.  f )
30 flimrest 20311 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  X )  /\  f  e.  ( Fil `  X
)  /\  Y  e.  f )  ->  (
( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3127, 28, 29, 30syl3anc 1228 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( J  fLim  f )  i^i  Y ) )
3219adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  Y  C_  X
)
33 eqid 2467 . . . . . . . . . . . . . 14  |-  ( D  |`  ( Y  X.  Y
) )  =  ( D  |`  ( Y  X.  Y ) )
34 eqid 2467 . . . . . . . . . . . . . 14  |-  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) )
3533, 5, 34metrest 20854 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  Y  C_  X
)  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3623, 32, 35syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( Jt  Y
)  =  ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) )
3736oveq1d 6300 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( Jt  Y )  fLim  (
ft 
Y ) )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y ) ) ) 
fLim  ( ft  Y ) ) )
3831, 37eqtr3d 2510 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =  ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) ) )
39 simplr 754 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( D  |`  ( Y  X.  Y
) )  e.  (
CMet `  Y )
)
405flimcfil 21579 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ( J  fLim  f )
)  ->  f  e.  (CauFil `  D ) )
4123, 22, 40syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  f  e.  (CauFil `  D ) )
42 cfilres 21562 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  f  e.  ( Fil `  X )  /\  Y  e.  f )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4323, 28, 29, 42syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( f  e.  (CauFil `  D )  <->  ( ft  Y )  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) ) )
4441, 43mpbid 210 . . . . . . . . . . 11  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )
4534cmetcvg 21551 . . . . . . . . . . 11  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  /\  ( ft  Y
)  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4639, 44, 45syl2anc 661 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  fLim  ( ft  Y ) )  =/=  (/) )
4738, 46eqnetrd 2760 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( ( J  fLim  f )  i^i 
Y )  =/=  (/) )
48 n0 3794 . . . . . . . . . 10  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x  x  e.  ( ( J  fLim  f )  i^i  Y ) )
49 elin 3687 . . . . . . . . . . 11  |-  ( x  e.  ( ( J 
fLim  f )  i^i 
Y )  <->  ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5049exbii 1644 . . . . . . . . . 10  |-  ( E. x  x  e.  ( ( J  fLim  f
)  i^i  Y )  <->  E. x ( x  e.  ( J  fLim  f
)  /\  x  e.  Y ) )
5148, 50bitri 249 . . . . . . . . 9  |-  ( ( ( J  fLim  f
)  i^i  Y )  =/=  (/)  <->  E. x ( x  e.  ( J  fLim  f )  /\  x  e.  Y ) )
5247, 51sylib 196 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )
53 mopick 2361 . . . . . . . 8  |-  ( ( E* x  x  e.  ( J  fLim  f
)  /\  E. x
( x  e.  ( J  fLim  f )  /\  x  e.  Y
) )  ->  (
x  e.  ( J 
fLim  f )  ->  x  e.  Y )
)
5426, 52, 53syl2anc 661 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  ( x  e.  ( J  fLim  f
)  ->  x  e.  Y ) )
5522, 54mpd 15 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  /\  (
f  e.  ( Fil `  X )  /\  ( Y  e.  f  /\  x  e.  ( J  fLim  f ) ) ) )  ->  x  e.  Y )
5655rexlimdvaa 2956 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( E. f  e.  ( Fil `  X ) ( Y  e.  f  /\  x  e.  ( J  fLim  f ) )  ->  x  e.  Y )
)
5721, 56sylbid 215 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
x  e.  ( ( cls `  J ) `
 Y )  ->  x  e.  Y )
)
5857ssrdv 3510 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  (
( cls `  J
) `  Y )  C_  Y )
595mopntop 20770 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
604, 59syl 16 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  J  e.  Top )
615mopnuni 20771 . . . . . 6  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
624, 61syl 16 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  X  =  U. J )
6319, 62sseqtrd 3540 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  C_ 
U. J )
64 eqid 2467 . . . . 5  |-  U. J  =  U. J
6564iscld4 19372 . . . 4  |-  ( ( J  e.  Top  /\  Y  C_  U. J )  ->  ( Y  e.  ( Clsd `  J
)  <->  ( ( cls `  J ) `  Y
)  C_  Y )
)
6660, 63, 65syl2anc 661 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  ( Y  e.  ( Clsd `  J )  <->  ( ( cls `  J ) `  Y )  C_  Y
) )
6758, 66mpbird 232 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )  ->  Y  e.  ( Clsd `  J
) )
681adantr 465 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( Met `  X
) )
6964cldss 19336 . . . . . 6  |-  ( Y  e.  ( Clsd `  J
)  ->  Y  C_  U. J
)
7069adantl 466 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_ 
U. J )
7168, 2, 613syl 20 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  X  =  U. J )
7270, 71sseqtr4d 3541 . . . 4  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  Y  C_  X )
73 metres2 20693 . . . 4  |-  ( ( D  e.  ( Met `  X )  /\  Y  C_  X )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
7468, 72, 73syl2anc 661 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
) )
753ad2antrr 725 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( *Met `  X ) )
7672adantr 465 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  C_  X )
7775, 76, 35syl2anc 661 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( Jt  Y )  =  (
MetOpen `  ( D  |`  ( Y  X.  Y
) ) ) )
7877eqcomd 2475 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( MetOpen
`  ( D  |`  ( Y  X.  Y
) ) )  =  ( Jt  Y ) )
79 metxmet 20664 . . . . . . . . . . 11  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( Met `  Y
)  ->  ( D  |`  ( Y  X.  Y
) )  e.  ( *Met `  Y
) )
8074, 79syl 16 . . . . . . . . . 10  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y ) )
81 cfilfil 21533 . . . . . . . . . 10  |-  ( ( ( D  |`  ( Y  X.  Y ) )  e.  ( *Met `  Y )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) )  ->  f  e.  ( Fil `  Y ) )
8280, 81sylan 471 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( Fil `  Y
) )
83 elfvdm 5892 . . . . . . . . . 10  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
8483ad2antrr 725 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  X  e.  dom  CMet )
85 trfg 20219 . . . . . . . . 9  |-  ( ( f  e.  ( Fil `  Y )  /\  Y  C_  X  /\  X  e. 
dom  CMet )  ->  (
( X filGen f )t  Y )  =  f )
8682, 76, 84, 85syl3anc 1228 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( X filGen f )t  Y )  =  f )
8786eqcomd 2475 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  =  ( ( X
filGen f )t  Y ) )
8878, 87oveq12d 6303 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( ( Jt  Y )  fLim  (
( X filGen f )t  Y ) ) )
8975, 6syl 16 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  J  e.  (TopOn `  X )
)
90 filfbas 20176 . . . . . . . . . 10  |-  ( f  e.  ( Fil `  Y
)  ->  f  e.  ( fBas `  Y )
)
9182, 90syl 16 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  Y
) )
92 filsspw 20179 . . . . . . . . . . 11  |-  ( f  e.  ( Fil `  Y
)  ->  f  C_  ~P Y )
9382, 92syl 16 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P Y )
94 sspwb 4696 . . . . . . . . . . 11  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
9576, 94sylib 196 . . . . . . . . . 10  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ~P Y  C_  ~P X )
9693, 95sstrd 3514 . . . . . . . . 9  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_ 
~P X )
97 fbasweak 20193 . . . . . . . . 9  |-  ( ( f  e.  ( fBas `  Y )  /\  f  C_ 
~P X  /\  X  e.  dom  CMet )  ->  f  e.  ( fBas `  X
) )
9891, 96, 84, 97syl3anc 1228 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  e.  ( fBas `  X
) )
99 fgcl 20206 . . . . . . . 8  |-  ( f  e.  ( fBas `  X
)  ->  ( X filGen f )  e.  ( Fil `  X ) )
10098, 99syl 16 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  ( Fil `  X
) )
101 ssfg 20200 . . . . . . . . 9  |-  ( f  e.  ( fBas `  X
)  ->  f  C_  ( X filGen f ) )
10298, 101syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  f  C_  ( X filGen f ) )
103 filtop 20183 . . . . . . . . 9  |-  ( f  e.  ( Fil `  Y
)  ->  Y  e.  f )
10482, 103syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  f )
105102, 104sseldd 3505 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  Y  e.  ( X filGen f ) )
106 flimrest 20311 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  ( X filGen f )  e.  ( Fil `  X
)  /\  Y  e.  ( X filGen f ) )  ->  ( ( Jt  Y )  fLim  ( ( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i 
Y ) )
10789, 100, 105, 106syl3anc 1228 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( Jt  Y )  fLim  (
( X filGen f )t  Y ) )  =  ( ( J  fLim  ( X filGen f ) )  i^i  Y ) )
108 flimclsi 20306 . . . . . . . . 9  |-  ( Y  e.  ( X filGen f )  ->  ( J  fLim  ( X filGen f ) )  C_  ( ( cls `  J ) `  Y ) )
109105, 108syl 16 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  (
( cls `  J
) `  Y )
)
110 cldcls 19349 . . . . . . . . 9  |-  ( Y  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  Y )  =  Y )
111110ad2antlr 726 . . . . . . . 8  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( cls `  J
) `  Y )  =  Y )
112109, 111sseqtrd 3540 . . . . . . 7  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  C_  Y
)
113 df-ss 3490 . . . . . . 7  |-  ( ( J  fLim  ( X filGen f ) )  C_  Y 
<->  ( ( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
114112, 113sylib 196 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( J  fLim  ( X filGen f ) )  i^i  Y )  =  ( J  fLim  ( X filGen f ) ) )
11588, 107, 1143eqtrd 2512 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =  ( J 
fLim  ( X filGen f ) ) )
116 simpll 753 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  D  e.  ( CMet `  X
) )
11768, 2syl 16 . . . . . . 7  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  D  e.  ( *Met `  X ) )
118 cfilresi 21561 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
119117, 118sylan 471 . . . . . 6  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( X filGen f )  e.  (CauFil `  D )
)
1205cmetcvg 21551 . . . . . 6  |-  ( ( D  e.  ( CMet `  X )  /\  ( X filGen f )  e.  (CauFil `  D )
)  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
121116, 119, 120syl2anc 661 . . . . 5  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  ( J  fLim  ( X filGen f ) )  =/=  (/) )
122115, 121eqnetrd 2760 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  Y  e.  ( Clsd `  J ) )  /\  f  e.  (CauFil `  ( D  |`  ( Y  X.  Y ) ) ) )  ->  (
( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
123122ralrimiva 2878 . . 3  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) )
12434iscmet 21550 . . 3  |-  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  ( ( D  |`  ( Y  X.  Y
) )  e.  ( Met `  Y )  /\  A. f  e.  (CauFil `  ( D  |`  ( Y  X.  Y
) ) ) ( ( MetOpen `  ( D  |`  ( Y  X.  Y
) ) )  fLim  f )  =/=  (/) ) )
12574, 123, 124sylanbrc 664 . 2  |-  ( ( D  e.  ( CMet `  X )  /\  Y  e.  ( Clsd `  J
) )  ->  ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
) )
12667, 125impbida 830 1  |-  ( D  e.  ( CMet `  X
)  ->  ( ( D  |`  ( Y  X.  Y ) )  e.  ( CMet `  Y
)  <->  Y  e.  ( Clsd `  J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   E*wmo 2276    =/= wne 2662   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   U.cuni 4245    X. cxp 4997   dom cdm 4999    |` cres 5001   ` cfv 5588  (class class class)co 6285   ↾t crest 14679   *Metcxmt 18214   Metcme 18215   fBascfbas 18217   filGencfg 18218   MetOpencmopn 18219   Topctop 19201  TopOnctopon 19202   Clsdccld 19323   clsccl 19325   Hauscha 19615   Filcfil 20173    fLim cflim 20262  CauFilccfil 21518   CMetcms 21520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-1o 7131  df-oadd 7135  df-er 7312  df-map 7423  df-en 7518  df-dom 7519  df-sdom 7520  df-fin 7521  df-fi 7872  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-n0 10797  df-z 10866  df-uz 11084  df-q 11184  df-rp 11222  df-xneg 11319  df-xadd 11320  df-xmul 11321  df-ico 11536  df-icc 11537  df-rest 14681  df-topgen 14702  df-psmet 18222  df-xmet 18223  df-met 18224  df-bl 18225  df-mopn 18226  df-fbas 18227  df-fg 18228  df-top 19206  df-bases 19208  df-topon 19209  df-cld 19326  df-ntr 19327  df-cls 19328  df-nei 19405  df-haus 19622  df-fil 20174  df-flim 20267  df-cfil 21521  df-cmet 21523
This theorem is referenced by:  recmet  21589  cmsss  21616  bnsscmcl  25557  rrnheibor  30163
  Copyright terms: Public domain W3C validator