HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Structured version   Unicode version

Theorem cmbri 26650
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1  |-  A  e. 
CH
pjoml2.2  |-  B  e. 
CH
Assertion
Ref Expression
cmbri  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2  |-  A  e. 
CH
2 pjoml2.2 . 2  |-  B  e. 
CH
3 cmbr 26644 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
41, 2, 3mp2an 670 1  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1399    e. wcel 1836    i^i cin 3405   class class class wbr 4384   ` cfv 5513  (class class class)co 6218   CHcch 25988   _|_cort 25989    vH chj 25992    C_H ccm 25995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-sep 4505  ax-nul 4513  ax-pr 4618
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-rex 2752  df-rab 2755  df-v 3053  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3729  df-if 3875  df-sn 3962  df-pr 3964  df-op 3968  df-uni 4181  df-br 4385  df-opab 4443  df-iota 5477  df-fv 5521  df-ov 6221  df-cm 26643
This theorem is referenced by:  cmcmlem  26651  cmcm2i  26653  cmbr2i  26656  cmbr3i  26660  pjclem1  27255  pjci  27260
  Copyright terms: Public domain W3C validator