HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbri Structured version   Unicode version

Theorem cmbri 25146
Description: Binary relation expressing the commutes relation. Definition of commutes in [Kalmbach] p. 20. (Contributed by NM, 6-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1  |-  A  e. 
CH
pjoml2.2  |-  B  e. 
CH
Assertion
Ref Expression
cmbri  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )

Proof of Theorem cmbri
StepHypRef Expression
1 pjoml2.1 . 2  |-  A  e. 
CH
2 pjoml2.2 . 2  |-  B  e. 
CH
3 cmbr 25140 . 2  |-  ( ( A  e.  CH  /\  B  e.  CH )  ->  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B ) ) ) ) )
41, 2, 3mp2an 672 1  |-  ( A  C_H  B  <->  A  =  ( ( A  i^i  B )  vH  ( A  i^i  ( _|_ `  B
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1370    e. wcel 1758    i^i cin 3436   class class class wbr 4401   ` cfv 5527  (class class class)co 6201   CHcch 24484   _|_cort 24485    vH chj 24488    C_H ccm 24491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pr 4640
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-br 4402  df-opab 4460  df-iota 5490  df-fv 5535  df-ov 6204  df-cm 25139
This theorem is referenced by:  cmcmlem  25147  cmcm2i  25149  cmbr2i  25152  cmbr3i  25156  pjclem1  25752  pjci  25757
  Copyright terms: Public domain W3C validator