Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  cmbr3i Structured version   Unicode version

Theorem cmbr3i 26644
 Description: Alternate definition for the commutes relation. Lemma 3 of [Kalmbach] p. 23. (Contributed by NM, 6-Dec-2000.) (New usage is discouraged.)
Hypotheses
Ref Expression
pjoml2.1
pjoml2.2
Assertion
Ref Expression
cmbr3i

Proof of Theorem cmbr3i
StepHypRef Expression
1 pjoml2.1 . . . . 5
2 pjoml2.2 . . . . 5
31, 2cmcmi 26636 . . . 4
42, 1cmbr2i 26640 . . . 4
53, 4bitri 249 . . 3
6 ineq2 3690 . . . 4
7 inass 3704 . . . . 5
82, 1chjcomi 26512 . . . . . . . 8
98ineq2i 3693 . . . . . . 7
101, 2chabs2i 26563 . . . . . . 7
119, 10eqtri 2486 . . . . . 6
121choccli 26351 . . . . . . 7
132, 12chjcomi 26512 . . . . . 6
1411, 13ineq12i 3694 . . . . 5
157, 14eqtr3i 2488 . . . 4
166, 15syl6req 2515 . . 3
175, 16sylbi 195 . 2
18 inss1 3714 . . . . . 6
192choccli 26351 . . . . . . . 8
201, 19chincli 26504 . . . . . . 7
2120, 1pjoml2i 26629 . . . . . 6
2218, 21ax-mp 5 . . . . 5
2320choccli 26351 . . . . . . 7
2423, 1chincli 26504 . . . . . 6
2520, 24chjcomi 26512 . . . . 5
2622, 25eqtr3i 2488 . . . 4
271, 2chdmm3i 26523 . . . . . . . 8
2827ineq2i 3693 . . . . . . 7
29 incom 3687 . . . . . . 7
3028, 29eqtr3i 2488 . . . . . 6
3130eqeq1i 2464 . . . . 5
32 oveq1 6303 . . . . 5
3331, 32sylbi 195 . . . 4
3426, 33syl5eq 2510 . . 3
351, 2cmbri 26634 . . 3
3634, 35sylibr 212 . 2
3717, 36impbii 188 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wceq 1395   wcel 1819   cin 3470   wss 3471   class class class wbr 4456  cfv 5594  (class class class)co 6296  cch 25972  cort 25973   chj 25976   ccm 25979 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589  ax-hilex 26042  ax-hfvadd 26043  ax-hvcom 26044  ax-hvass 26045  ax-hv0cl 26046  ax-hvaddid 26047  ax-hfvmul 26048  ax-hvmulid 26049  ax-hvmulass 26050  ax-hvdistr1 26051  ax-hvdistr2 26052  ax-hvmul0 26053  ax-hfi 26122  ax-his1 26125  ax-his2 26126  ax-his3 26127  ax-his4 26128  ax-hcompl 26245 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11821  df-fl 11931  df-seq 12110  df-exp 12169  df-hash 12408  df-cj 12943  df-re 12944  df-im 12945  df-sqrt 13079  df-abs 13080  df-clim 13322  df-rlim 13323  df-sum 13520  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-starv 14726  df-sca 14727  df-vsca 14728  df-ip 14729  df-tset 14730  df-ple 14731  df-ds 14733  df-unif 14734  df-hom 14735  df-cco 14736  df-rest 14839  df-topn 14840  df-0g 14858  df-gsum 14859  df-topgen 14860  df-pt 14861  df-prds 14864  df-xrs 14918  df-qtop 14923  df-imas 14924  df-xps 14926  df-mre 15002  df-mrc 15003  df-acs 15005  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-mulg 16186  df-cntz 16481  df-cmn 16926  df-psmet 18537  df-xmet 18538  df-met 18539  df-bl 18540  df-mopn 18541  df-fbas 18542  df-fg 18543  df-cnfld 18547  df-top 19525  df-bases 19527  df-topon 19528  df-topsp 19529  df-cld 19646  df-ntr 19647  df-cls 19648  df-nei 19725  df-cn 19854  df-cnp 19855  df-lm 19856  df-haus 19942  df-tx 20188  df-hmeo 20381  df-fil 20472  df-fm 20564  df-flim 20565  df-flf 20566  df-xms 20948  df-ms 20949  df-tms 20950  df-cfil 21819  df-cau 21820  df-cmet 21821  df-grpo 25319  df-gid 25320  df-ginv 25321  df-gdiv 25322  df-ablo 25410  df-subgo 25430  df-vc 25565  df-nv 25611  df-va 25614  df-ba 25615  df-sm 25616  df-0v 25617  df-vs 25618  df-nmcv 25619  df-ims 25620  df-dip 25737  df-ssp 25761  df-ph 25854  df-cbn 25905  df-hnorm 26011  df-hba 26012  df-hvsub 26014  df-hlim 26015  df-hcau 26016  df-sh 26250  df-ch 26265  df-oc 26296  df-ch0 26297  df-shs 26352  df-chj 26354  df-cm 26627 This theorem is referenced by:  cmbr4i  26645  cmbr3  26652
 Copyright terms: Public domain W3C validator