MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwnisshclwwn Structured version   Unicode version

Theorem clwwnisshclwwn 24632
Description: Cyclically shifting a closed walk as word of fixed length results in a closed walk as word of the same length (in an undirected graph). (Contributed by Alexander van der Vekens, 10-Jun-2018.)
Assertion
Ref Expression
clwwnisshclwwn  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  ( M  e.  ( 0 ... N )  -> 
( W cyclShift  M )  e.  ( ( V ClWWalksN  E ) `
 N ) ) )

Proof of Theorem clwwnisshclwwn
StepHypRef Expression
1 clwwlknprop 24595 . . . . . . 7  |-  ( W  e.  ( ( V ClWWalksN  E ) `  N
)  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `
 W )  =  N ) ) )
2 simpl 457 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  ( # `  W )  =  N )  ->  N  e.  NN0 )
32anim2i 569 . . . . . . . . . 10  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 ) )
4 df-3an 975 . . . . . . . . . 10  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  <->  ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 ) )
53, 4sylibr 212 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( V  e.  _V  /\  E  e. 
_V  /\  N  e.  NN0 ) )
653adant2 1015 . . . . . . . 8  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( V  e.  _V  /\  E  e. 
_V  /\  N  e.  NN0 ) )
7 clwwlkisclwwlkn 24614 . . . . . . . 8  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  ( W  e.  ( ( V ClWWalksN  E ) `  N
)  ->  W  e.  ( V ClWWalks  E ) ) )
86, 7syl 16 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( W  e.  ( ( V ClWWalksN  E ) `
 N )  ->  W  e.  ( V ClWWalks  E ) ) )
91, 8mpcom 36 . . . . . 6  |-  ( W  e.  ( ( V ClWWalksN  E ) `  N
)  ->  W  e.  ( V ClWWalks  E ) )
109adantl 466 . . . . 5  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  W  e.  ( V ClWWalks  E )
)
1110adantr 465 . . . 4  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  W  e.  ( V ClWWalks  E )
)
12 eqcom 2476 . . . . . . . . . . . 12  |-  ( (
# `  W )  =  N  <->  N  =  ( # `
 W ) )
1312biimpi 194 . . . . . . . . . . 11  |-  ( (
# `  W )  =  N  ->  N  =  ( # `  W
) )
1413adantl 466 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( # `  W )  =  N )  ->  N  =  ( # `  W
) )
15143ad2ant3 1019 . . . . . . . . 9  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  N  =  ( # `  W ) )
161, 15syl 16 . . . . . . . 8  |-  ( W  e.  ( ( V ClWWalksN  E ) `  N
)  ->  N  =  ( # `  W ) )
1716adantl 466 . . . . . . 7  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  N  =  ( # `  W
) )
1817oveq2d 6311 . . . . . 6  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  (
0 ... N )  =  ( 0 ... ( # `
 W ) ) )
1918eleq2d 2537 . . . . 5  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  ( M  e.  ( 0 ... N )  <->  M  e.  ( 0 ... ( # `
 W ) ) ) )
2019biimpa 484 . . . 4  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  M  e.  ( 0 ... ( # `
 W ) ) )
21 clwwisshclwwn 24631 . . . 4  |-  ( ( W  e.  ( V ClWWalks  E )  /\  M  e.  ( 0 ... ( # `
 W ) ) )  ->  ( W cyclShift  M )  e.  ( V ClWWalks  E ) )
2211, 20, 21syl2anc 661 . . 3  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  ( W cyclShift  M )  e.  ( V ClWWalks  E ) )
23 elfzelz 11700 . . . . . . . . . . 11  |-  ( M  e.  ( 0 ... ( # `  W
) )  ->  M  e.  ZZ )
2423anim2i 569 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  M  e.  ( 0 ... ( # `  W
) ) )  -> 
( W  e. Word  V  /\  M  e.  ZZ ) )
25 cshwlen 12750 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  M  e.  ZZ )  ->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) )
2624, 25syl 16 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  M  e.  ( 0 ... ( # `  W
) ) )  -> 
( # `  ( W cyclShift  M ) )  =  ( # `  W
) )
2726ex 434 . . . . . . . 8  |-  ( W  e. Word  V  ->  ( M  e.  ( 0 ... ( # `  W
) )  ->  ( # `
 ( W cyclShift  M ) )  =  ( # `  W ) ) )
28273ad2ant2 1018 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( M  e.  ( 0 ... ( # `
 W ) )  ->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) ) )
29 oveq2 6303 . . . . . . . . . . . 12  |-  ( N  =  ( # `  W
)  ->  ( 0 ... N )  =  ( 0 ... ( # `
 W ) ) )
3029eleq2d 2537 . . . . . . . . . . 11  |-  ( N  =  ( # `  W
)  ->  ( M  e.  ( 0 ... N
)  <->  M  e.  (
0 ... ( # `  W
) ) ) )
31 eqeq2 2482 . . . . . . . . . . 11  |-  ( N  =  ( # `  W
)  ->  ( ( # `
 ( W cyclShift  M ) )  =  N  <->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) ) )
3230, 31imbi12d 320 . . . . . . . . . 10  |-  ( N  =  ( # `  W
)  ->  ( ( M  e.  ( 0 ... N )  -> 
( # `  ( W cyclShift  M ) )  =  N )  <->  ( M  e.  ( 0 ... ( # `
 W ) )  ->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) ) ) )
3332eqcoms 2479 . . . . . . . . 9  |-  ( (
# `  W )  =  N  ->  ( ( M  e.  ( 0 ... N )  -> 
( # `  ( W cyclShift  M ) )  =  N )  <->  ( M  e.  ( 0 ... ( # `
 W ) )  ->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) ) ) )
3433adantl 466 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( # `  W )  =  N )  -> 
( ( M  e.  ( 0 ... N
)  ->  ( # `  ( W cyclShift  M ) )  =  N )  <->  ( M  e.  ( 0 ... ( # `
 W ) )  ->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) ) ) )
35343ad2ant3 1019 . . . . . . 7  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( ( M  e.  ( 0 ... N )  -> 
( # `  ( W cyclShift  M ) )  =  N )  <->  ( M  e.  ( 0 ... ( # `
 W ) )  ->  ( # `  ( W cyclShift  M ) )  =  ( # `  W
) ) ) )
3628, 35mpbird 232 . . . . . 6  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  W  e. Word  V  /\  ( N  e.  NN0  /\  ( # `  W
)  =  N ) )  ->  ( M  e.  ( 0 ... N
)  ->  ( # `  ( W cyclShift  M ) )  =  N ) )
371, 36syl 16 . . . . 5  |-  ( W  e.  ( ( V ClWWalksN  E ) `  N
)  ->  ( M  e.  ( 0 ... N
)  ->  ( # `  ( W cyclShift  M ) )  =  N ) )
3837adantl 466 . . . 4  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  ( M  e.  ( 0 ... N )  -> 
( # `  ( W cyclShift  M ) )  =  N ) )
3938imp 429 . . 3  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  ( # `
 ( W cyclShift  M ) )  =  N )
401simp1d 1008 . . . . . . . 8  |-  ( W  e.  ( ( V ClWWalksN  E ) `  N
)  ->  ( V  e.  _V  /\  E  e. 
_V ) )
4140anim1i 568 . . . . . . 7  |-  ( ( W  e.  ( ( V ClWWalksN  E ) `  N
)  /\  N  e.  NN0 )  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  N  e.  NN0 ) )
4241, 4sylibr 212 . . . . . 6  |-  ( ( W  e.  ( ( V ClWWalksN  E ) `  N
)  /\  N  e.  NN0 )  ->  ( V  e.  _V  /\  E  e. 
_V  /\  N  e.  NN0 ) )
4342ancoms 453 . . . . 5  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  ( V  e.  _V  /\  E  e.  _V  /\  N  e. 
NN0 ) )
4443adantr 465 . . . 4  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  ( V  e.  _V  /\  E  e.  _V  /\  N  e. 
NN0 ) )
45 isclwwlkn 24592 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
( W cyclShift  M )  e.  ( ( V ClWWalksN  E ) `
 N )  <->  ( ( W cyclShift  M )  e.  ( V ClWWalks  E )  /\  ( # `
 ( W cyclShift  M ) )  =  N ) ) )
4644, 45syl 16 . . 3  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  (
( W cyclShift  M )  e.  ( ( V ClWWalksN  E ) `
 N )  <->  ( ( W cyclShift  M )  e.  ( V ClWWalks  E )  /\  ( # `
 ( W cyclShift  M ) )  =  N ) ) )
4722, 39, 46mpbir2and 920 . 2  |-  ( ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  /\  M  e.  ( 0 ... N
) )  ->  ( W cyclShift  M )  e.  ( ( V ClWWalksN  E ) `  N ) )
4847ex 434 1  |-  ( ( N  e.  NN0  /\  W  e.  ( ( V ClWWalksN  E ) `  N
) )  ->  ( M  e.  ( 0 ... N )  -> 
( W cyclShift  M )  e.  ( ( V ClWWalksN  E ) `
 N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3118   ` cfv 5594  (class class class)co 6295   0cc0 9504   NN0cn0 10807   ZZcz 10876   ...cfz 11684   #chash 12385  Word cword 12515   cyclShift ccsh 12739   ClWWalks cclwwlk 24571   ClWWalksN cclwwlkn 24572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-hash 12386  df-word 12523  df-lsw 12524  df-concat 12525  df-substr 12527  df-csh 12740  df-clwwlk 24574  df-clwwlkn 24575
This theorem is referenced by:  clwwlknscsh  24642
  Copyright terms: Public domain W3C validator