MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkisclwwlklem1 Structured version   Unicode version

Theorem clwlkisclwwlklem1 25191
Description: Lemma for clwlkisclwwlk 25193. (Contributed by Alexander van der Vekens, 22-Jun-2018.)
Assertion
Ref Expression
clwlkisclwwlklem1  |-  ( ( ( V USGrph  E  /\  F  e. Word  dom  E )  /\  ( P :
( 0 ... ( # `
 F ) ) --> V  /\  2  <_ 
( # `  P ) )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) )
Distinct variable groups:    i, E    P, i    i, V    i, F

Proof of Theorem clwlkisclwwlklem1
StepHypRef Expression
1 usgraf1 24764 . . . 4  |-  ( V USGrph  E  ->  E : dom  E
-1-1-> ran  E )
2 f1f 5763 . . . 4  |-  ( E : dom  E -1-1-> ran  E  ->  E : dom  E --> ran  E )
31, 2syl 17 . . 3  |-  ( V USGrph  E  ->  E : dom  E --> ran  E )
4 lencl 12612 . . . . . . . . . . 11  |-  ( F  e. Word  dom  E  ->  (
# `  F )  e.  NN0 )
5 ffn 5713 . . . . . . . . . . 11  |-  ( P : ( 0 ... ( # `  F
) ) --> V  ->  P  Fn  ( 0 ... ( # `  F
) ) )
6 fz0hash 12546 . . . . . . . . . . 11  |-  ( ( ( # `  F
)  e.  NN0  /\  P  Fn  ( 0 ... ( # `  F
) ) )  -> 
( # `  P )  =  ( ( # `  F )  +  1 ) )
74, 5, 6syl2an 475 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  ->  ( # `  P
)  =  ( (
# `  F )  +  1 ) )
8 ffz0iswrd 12619 . . . . . . . . . . . . . 14  |-  ( P : ( 0 ... ( # `  F
) ) --> V  ->  P  e. Word  V )
9 lsw 12636 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e. Word  V  ->  ( lastS  `  P )  =  ( P `  ( (
# `  P )  -  1 ) ) )
109ad6antr 734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  ( lastS  `  P )  =  ( P `  ( (
# `  P )  -  1 ) ) )
11 oveq1 6284 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
# `  P )  =  ( ( # `  F )  +  1 )  ->  ( ( # `
 P )  - 
1 )  =  ( ( ( # `  F
)  +  1 )  -  1 ) )
1211fveq2d 5852 . . . . . . . . . . . . . . . . . . 19  |-  ( (
# `  P )  =  ( ( # `  F )  +  1 )  ->  ( P `  ( ( # `  P
)  -  1 ) )  =  ( P `
 ( ( (
# `  F )  +  1 )  - 
1 ) ) )
1312ad4antlr 731 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  ( P `  ( ( # `
 P )  - 
1 ) )  =  ( P `  (
( ( # `  F
)  +  1 )  -  1 ) ) )
14 eqcom 2411 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P `  0 )  =  ( P `  ( # `  F ) )  <->  ( P `  ( # `  F ) )  =  ( P `
 0 ) )
15 nn0cn 10845 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  CC )
16 1cnd 9641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  F )  e.  NN0  ->  1  e.  CC )
1715, 16pncand 9967 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  F )  e.  NN0  ->  ( (
( # `  F )  +  1 )  - 
1 )  =  (
# `  F )
)
1817eqcomd 2410 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  =  ( ( ( # `  F
)  +  1 )  -  1 ) )
1918ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( # `  F )  =  ( ( (
# `  F )  +  1 )  - 
1 ) )
2019fveq2d 5852 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( P `  ( # `
 F ) )  =  ( P `  ( ( ( # `  F )  +  1 )  -  1 ) ) )
2120eqeq1d 2404 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( P `  ( # `  F ) )  =  ( P `
 0 )  <->  ( P `  ( ( ( # `  F )  +  1 )  -  1 ) )  =  ( P `
 0 ) ) )
2221biimpd 207 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( P `  ( # `  F ) )  =  ( P `
 0 )  -> 
( P `  (
( ( # `  F
)  +  1 )  -  1 ) )  =  ( P ` 
0 ) ) )
2314, 22syl5bi 217 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( P ` 
0 )  =  ( P `  ( # `  F ) )  -> 
( P `  (
( ( # `  F
)  +  1 )  -  1 ) )  =  ( P ` 
0 ) ) )
2423adantld 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  ( P `  ( (
( # `  F )  +  1 )  - 
1 ) )  =  ( P `  0
) ) )
2524imp 427 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  ( P `  ( (
( # `  F )  +  1 )  - 
1 ) )  =  ( P `  0
) )
2610, 13, 253eqtrd 2447 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  ( lastS  `  P )  =  ( P `  0 ) )
27 nn0z 10927 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  ZZ )
28 peano2zm 10947 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  e.  ZZ  ->  ( ( # `
 F )  - 
1 )  e.  ZZ )
2927, 28syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  - 
1 )  e.  ZZ )
30 nn0re 10844 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  RR )
3130lem1d 10518 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 F )  - 
1 )  <_  ( # `
 F ) )
32 eluz2 11132 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  F )  e.  ( ZZ>= `  ( ( # `
 F )  - 
1 ) )  <->  ( (
( # `  F )  -  1 )  e.  ZZ  /\  ( # `  F )  e.  ZZ  /\  ( ( # `  F
)  -  1 )  <_  ( # `  F
) ) )
3329, 27, 31, 32syl3anbrc 1181 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
# `  F )  e.  NN0  ->  ( # `  F
)  e.  ( ZZ>= `  ( ( # `  F
)  -  1 ) ) )
3433ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( # `  F )  e.  ( ZZ>= `  (
( # `  F )  -  1 ) ) )
35 fzoss2 11883 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  F )  e.  ( ZZ>= `  ( ( # `
 F )  - 
1 ) )  -> 
( 0..^ ( (
# `  F )  -  1 ) ) 
C_  ( 0..^ (
# `  F )
) )
36 ssralv 3502 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0..^ ( ( # `  F )  -  1 ) )  C_  (
0..^ ( # `  F
) )  ->  ( A. i  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) ( E `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
3734, 35, 363syl 20 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  ->  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) ( E `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) } ) )
38 simpr 459 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  ->  E : dom  E --> ran  E
)
3938adantr 463 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  i  e.  ( 0..^ ( ( # `  F
)  -  1 ) ) )  ->  E : dom  E --> ran  E
)
40 wrdf 12601 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( F  e. Word  dom  E  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
41 simpll 752 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  ( # `  F
)  e.  NN0 )  /\  i  e.  (
0..^ ( ( # `  F )  -  1 ) ) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
42 fzossrbm1 11884 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
# `  F )  e.  ZZ  ->  ( 0..^ ( ( # `  F
)  -  1 ) )  C_  ( 0..^ ( # `  F
) ) )
4327, 42syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
# `  F )  e.  NN0  ->  ( 0..^ ( ( # `  F
)  -  1 ) )  C_  ( 0..^ ( # `  F
) ) )
4443adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  ( # `  F
)  e.  NN0 )  ->  ( 0..^ ( (
# `  F )  -  1 ) ) 
C_  ( 0..^ (
# `  F )
) )
4544sselda 3441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  ( # `  F
)  e.  NN0 )  /\  i  e.  (
0..^ ( ( # `  F )  -  1 ) ) )  -> 
i  e.  ( 0..^ ( # `  F
) ) )
4641, 45ffvelrnd 6009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F : ( 0..^ ( # `  F
) ) --> dom  E  /\  ( # `  F
)  e.  NN0 )  /\  i  e.  (
0..^ ( ( # `  F )  -  1 ) ) )  -> 
( F `  i
)  e.  dom  E
)
4746exp31 602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( F : ( 0..^ (
# `  F )
) --> dom  E  ->  ( ( # `  F
)  e.  NN0  ->  ( i  e.  ( 0..^ ( ( # `  F
)  -  1 ) )  ->  ( F `  i )  e.  dom  E ) ) )
4840, 47syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( F  e. Word  dom  E  ->  ( ( # `  F
)  e.  NN0  ->  ( i  e.  ( 0..^ ( ( # `  F
)  -  1 ) )  ->  ( F `  i )  e.  dom  E ) ) )
4948adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e. Word  V  /\  F  e. Word  dom  E )  ->  ( ( # `  F )  e.  NN0  ->  ( i  e.  ( 0..^ ( ( # `  F )  -  1 ) )  ->  ( F `  i )  e.  dom  E ) ) )
5049imp 427 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  ->  ( i  e.  ( 0..^ ( ( # `  F )  -  1 ) )  ->  ( F `  i )  e.  dom  E ) )
5150ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( i  e.  ( 0..^ ( ( # `  F )  -  1 ) )  ->  ( F `  i )  e.  dom  E ) )
5251imp 427 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  i  e.  ( 0..^ ( ( # `  F
)  -  1 ) ) )  ->  ( F `  i )  e.  dom  E )
5339, 52ffvelrnd 6009 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  i  e.  ( 0..^ ( ( # `  F
)  -  1 ) ) )  ->  ( E `  ( F `  i ) )  e. 
ran  E )
54 eqcom 2411 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  <->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  =  ( E `  ( F `
 i ) ) )
5554biimpi 194 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  ->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  =  ( E `  ( F `
 i ) ) )
5655eleq1d 2471 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  ->  ( { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  <->  ( E `  ( F `
 i ) )  e.  ran  E ) )
5753, 56syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  i  e.  ( 0..^ ( ( # `  F
)  -  1 ) ) )  ->  (
( E `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  { ( P `  i
) ,  ( P `
 ( i  +  1 ) ) }  e.  ran  E ) )
5857ralimdva 2811 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) ( E `  ( F `  i )
)  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  A. i  e.  ( 0..^ ( ( # `  F
)  -  1 ) ) { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  e.  ran  E ) )
5937, 58syld 42 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  ->  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E
) )
6059com12 29 . . . . . . . . . . . . . . . . . . 19  |-  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  ( (
( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  ->  A. i  e.  (
0..^ ( ( # `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E ) )
6160adantr 463 . . . . . . . . . . . . . . . . . 18  |-  ( ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( (
( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  ->  A. i  e.  (
0..^ ( ( # `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E ) )
6261impcom 428 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E
)
63 breq2 4398 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
# `  P )  =  ( ( # `  F )  +  1 )  ->  ( 2  <_  ( # `  P
)  <->  2  <_  (
( # `  F )  +  1 ) ) )
6463adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  ->  ( 2  <_ 
( # `  P )  <->  2  <_  ( ( # `
 F )  +  1 ) ) )
65 2re 10645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  2  e.  RR
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  F )  e.  NN0  ->  2  e.  RR )
67 1red 9640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  F )  e.  NN0  ->  1  e.  RR )
6866, 67, 30lesubaddd 10188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  F )  e.  NN0  ->  ( (
2  -  1 )  <_  ( # `  F
)  <->  2  <_  (
( # `  F )  +  1 ) ) )
69 2m1e1 10690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( 2  -  1 )  =  1
7069breq1i 4401 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 2  -  1 )  <_  ( # `  F
)  <->  1  <_  ( # `
 F ) )
71 elnnnn0c 10881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
# `  F )  e.  NN  <->  ( ( # `  F )  e.  NN0  /\  1  <_  ( # `  F
) ) )
7271simplbi2 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  F )  e.  NN0  ->  ( 1  <_  ( # `  F
)  ->  ( # `  F
)  e.  NN ) )
7370, 72syl5bi 217 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  F )  e.  NN0  ->  ( (
2  -  1 )  <_  ( # `  F
)  ->  ( # `  F
)  e.  NN ) )
7468, 73sylbird 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
# `  F )  e.  NN0  ->  ( 2  <_  ( ( # `  F )  +  1 )  ->  ( # `  F
)  e.  NN ) )
7574adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  ->  ( 2  <_  (
( # `  F )  +  1 )  -> 
( # `  F )  e.  NN ) )
7675adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  ->  ( 2  <_ 
( ( # `  F
)  +  1 )  ->  ( # `  F
)  e.  NN ) )
7764, 76sylbid 215 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  ->  ( 2  <_ 
( # `  P )  ->  ( # `  F
)  e.  NN ) )
7877imp 427 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  /\  2  <_  ( # `  P
) )  ->  ( # `
 F )  e.  NN )
7978adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( # `  F )  e.  NN )
80 lbfzo0 11892 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( 0  e.  ( 0..^ (
# `  F )
)  <->  ( # `  F
)  e.  NN )
8179, 80sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
0  e.  ( 0..^ ( # `  F
) ) )
82 fzoend 11938 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( 0  e.  ( 0..^ (
# `  F )
)  ->  ( ( # `
 F )  - 
1 )  e.  ( 0..^ ( # `  F
) ) )
8381, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( # `  F
)  -  1 )  e.  ( 0..^ (
# `  F )
) )
84 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( i  =  ( ( # `  F )  -  1 )  ->  ( F `  i )  =  ( F `  ( (
# `  F )  -  1 ) ) )
8584fveq2d 5852 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( i  =  ( ( # `  F )  -  1 )  ->  ( E `  ( F `  i
) )  =  ( E `  ( F `
 ( ( # `  F )  -  1 ) ) ) )
86 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( i  =  ( ( # `  F )  -  1 )  ->  ( P `  i )  =  ( P `  ( (
# `  F )  -  1 ) ) )
87 oveq1 6284 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( i  =  ( ( # `  F )  -  1 )  ->  ( i  +  1 )  =  ( ( ( # `  F )  -  1 )  +  1 ) )
8887fveq2d 5852 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( i  =  ( ( # `  F )  -  1 )  ->  ( P `  ( i  +  1 ) )  =  ( P `  ( ( ( # `  F
)  -  1 )  +  1 ) ) )
8986, 88preq12d 4058 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( i  =  ( ( # `  F )  -  1 )  ->  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  =  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( ( (
# `  F )  -  1 )  +  1 ) ) } )
9085, 89eqeq12d 2424 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( i  =  ( ( # `  F )  -  1 )  ->  ( ( E `  ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( E `  ( F `  ( (
# `  F )  -  1 ) ) )  =  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( ( ( # `  F )  -  1 )  +  1 ) ) } ) )
9190adantl 464 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  i  =  ( ( # `
 F )  - 
1 ) )  -> 
( ( E `  ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  <->  ( E `  ( F `  (
( # `  F )  -  1 ) ) )  =  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( ( ( # `  F )  -  1 )  +  1 ) ) } ) )
9283, 91rspcdv 3162 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  ->  ( E `  ( F `  ( ( # `  F
)  -  1 ) ) )  =  {
( P `  (
( # `  F )  -  1 ) ) ,  ( P `  ( ( ( # `  F )  -  1 )  +  1 ) ) } ) )
9315, 16npcand 9970 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  F )  e.  NN0  ->  ( (
( # `  F )  -  1 )  +  1 )  =  (
# `  F )
)
9493ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( ( # `  F )  -  1 )  +  1 )  =  ( # `  F
) )
9594fveq2d 5852 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( P `  (
( ( # `  F
)  -  1 )  +  1 ) )  =  ( P `  ( # `  F ) ) )
9695preq2d 4057 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  ->  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( ( (
# `  F )  -  1 )  +  1 ) ) }  =  { ( P `
 ( ( # `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) } )
9796eqeq2d 2416 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( E `  ( F `  ( (
# `  F )  -  1 ) ) )  =  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( ( ( # `  F )  -  1 )  +  1 ) ) }  <->  ( E `  ( F `  (
( # `  F )  -  1 ) ) )  =  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) } ) )
9840ad4antlr 731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  /\  2  <_  ( # `  P
) )  ->  F : ( 0..^ (
# `  F )
) --> dom  E )
9974com12 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( 2  <_  ( ( # `  F )  +  1 )  ->  ( ( # `
 F )  e. 
NN0  ->  ( # `  F
)  e.  NN ) )
10063, 99syl6bi 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  P )  =  ( ( # `  F )  +  1 )  ->  ( 2  <_  ( # `  P
)  ->  ( ( # `
 F )  e. 
NN0  ->  ( # `  F
)  e.  NN ) ) )
101100com3r 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  F )  e.  NN0  ->  ( ( # `
 P )  =  ( ( # `  F
)  +  1 )  ->  ( 2  <_ 
( # `  P )  ->  ( # `  F
)  e.  NN ) ) )
102101adantl 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  ->  ( ( # `  P
)  =  ( (
# `  F )  +  1 )  -> 
( 2  <_  ( # `
 P )  -> 
( # `  F )  e.  NN ) ) )
103102imp31 430 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  /\  2  <_  ( # `  P
) )  ->  ( # `
 F )  e.  NN )
104103, 80sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  /\  2  <_  ( # `  P
) )  ->  0  e.  ( 0..^ ( # `  F ) ) )
105104, 82syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  /\  2  <_  ( # `  P
) )  ->  (
( # `  F )  -  1 )  e.  ( 0..^ ( # `  F ) ) )
10698, 105ffvelrnd 6009 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P )  =  ( ( # `  F )  +  1 ) )  /\  2  <_  ( # `  P
) )  ->  ( F `  ( ( # `
 F )  - 
1 ) )  e. 
dom  E )
107106adantr 463 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( F `  (
( # `  F )  -  1 ) )  e.  dom  E )
10838, 107ffvelrnd 6009 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( E `  ( F `  ( ( # `
 F )  - 
1 ) ) )  e.  ran  E )
109 eqcom 2411 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( E `  ( F `
 ( ( # `  F )  -  1 ) ) )  =  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  <->  { ( P `  ( ( # `
 F )  - 
1 ) ) ,  ( P `  ( # `
 F ) ) }  =  ( E `
 ( F `  ( ( # `  F
)  -  1 ) ) ) )
110109biimpi 194 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( E `  ( F `
 ( ( # `  F )  -  1 ) ) )  =  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  ->  { ( P `  (
( # `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) }  =  ( E `  ( F `
 ( ( # `  F )  -  1 ) ) ) )
111110eleq1d 2471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( E `  ( F `
 ( ( # `  F )  -  1 ) ) )  =  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  ->  ( { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  e.  ran  E  <->  ( E `  ( F `  ( (
# `  F )  -  1 ) ) )  e.  ran  E
) )
112108, 111syl5ibrcom 222 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( E `  ( F `  ( (
# `  F )  -  1 ) ) )  =  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) }  ->  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) }  e.  ran  E ) )
11397, 112sylbid 215 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( ( E `  ( F `  ( (
# `  F )  -  1 ) ) )  =  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( ( ( # `  F )  -  1 )  +  1 ) ) }  ->  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) }  e.  ran  E ) )
11492, 113syld 42 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  -> 
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  ->  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) }  e.  ran  E ) )
115114com12 29 . . . . . . . . . . . . . . . . . . . 20  |-  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  ->  ( (
( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  ->  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  e.  ran  E ) )
116115adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( (
( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  ->  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  e.  ran  E ) )
117116impcom 428 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) }  e.  ran  E )
118 preq2 4051 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P `  0 )  =  ( P `  ( # `  F ) )  ->  { ( P `  ( ( # `
 F )  - 
1 ) ) ,  ( P `  0
) }  =  {
( P `  (
( # `  F )  -  1 ) ) ,  ( P `  ( # `  F ) ) } )
119118eleq1d 2471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( P `  0 )  =  ( P `  ( # `  F ) )  ->  ( {
( P `  (
( # `  F )  -  1 ) ) ,  ( P ` 
0 ) }  e.  ran  E  <->  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  e.  ran  E ) )
120119adantl 464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( {
( P `  (
( # `  F )  -  1 ) ) ,  ( P ` 
0 ) }  e.  ran  E  <->  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 ( # `  F
) ) }  e.  ran  E ) )
121120adantl 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  ( { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E  <->  { ( P `  ( ( # `
 F )  - 
1 ) ) ,  ( P `  ( # `
 F ) ) }  e.  ran  E
) )
122117, 121mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  { ( P `  ( (
# `  F )  -  1 ) ) ,  ( P ` 
0 ) }  e.  ran  E )
12326, 62, 1223jca 1177 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E
)  /\  ( # `  F
)  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  /\  2  <_  ( # `
 P ) )  /\  E : dom  E --> ran  E )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) )
124123exp41 608 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. Word  V  /\  F  e. Word  dom  E )  /\  ( # `  F )  e.  NN0 )  /\  ( # `  P
)  =  ( (
# `  F )  +  1 ) )  ->  ( 2  <_ 
( # `  P )  ->  ( E : dom  E --> ran  E  ->  ( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) )
125124exp41 608 . . . . . . . . . . . . . 14  |-  ( P  e. Word  V  ->  ( F  e. Word  dom  E  -> 
( ( # `  F
)  e.  NN0  ->  ( ( # `  P
)  =  ( (
# `  F )  +  1 )  -> 
( 2  <_  ( # `
 P )  -> 
( E : dom  E --> ran  E  ->  (
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) ) ) )
1268, 125syl 17 . . . . . . . . . . . . 13  |-  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( F  e. Word  dom  E  ->  ( ( # `  F )  e.  NN0  ->  ( ( # `  P
)  =  ( (
# `  F )  +  1 )  -> 
( 2  <_  ( # `
 P )  -> 
( E : dom  E --> ran  E  ->  (
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) ) ) )
127126com13 80 . . . . . . . . . . . 12  |-  ( (
# `  F )  e.  NN0  ->  ( F  e. Word  dom  E  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( # `  P
)  =  ( (
# `  F )  +  1 )  -> 
( 2  <_  ( # `
 P )  -> 
( E : dom  E --> ran  E  ->  (
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) ) ) )
1284, 127mpcom 34 . . . . . . . . . . 11  |-  ( F  e. Word  dom  E  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( # `  P
)  =  ( (
# `  F )  +  1 )  -> 
( 2  <_  ( # `
 P )  -> 
( E : dom  E --> ran  E  ->  (
( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) ) )
129128imp 427 . . . . . . . . . 10  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  ->  ( ( # `  P )  =  ( ( # `  F
)  +  1 )  ->  ( 2  <_ 
( # `  P )  ->  ( E : dom  E --> ran  E  ->  ( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) )
1307, 129mpd 15 . . . . . . . . 9  |-  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  ->  ( 2  <_ 
( # `  P )  ->  ( E : dom  E --> ran  E  ->  ( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) )
131130expcom 433 . . . . . . . 8  |-  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( F  e. Word  dom  E  ->  ( 2  <_ 
( # `  P )  ->  ( E : dom  E --> ran  E  ->  ( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) )
132131com14 88 . . . . . . 7  |-  ( E : dom  E --> ran  E  ->  ( F  e. Word  dom  E  ->  ( 2  <_ 
( # `  P )  ->  ( P :
( 0 ... ( # `
 F ) ) --> V  ->  ( ( A. i  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( ( lastS  `  P )  =  ( P `  0 )  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) ) )
133132imp 427 . . . . . 6  |-  ( ( E : dom  E --> ran  E  /\  F  e. Word  dom  E )  ->  (
2  <_  ( # `  P
)  ->  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) )
134133com13 80 . . . . 5  |-  ( P : ( 0 ... ( # `  F
) ) --> V  -> 
( 2  <_  ( # `
 P )  -> 
( ( E : dom  E --> ran  E  /\  F  e. Word  dom  E )  ->  ( ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( ( lastS  `  P )  =  ( P `  0 )  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) ) )
135134imp 427 . . . 4  |-  ( ( P : ( 0 ... ( # `  F
) ) --> V  /\  2  <_  ( # `  P
) )  ->  (
( E : dom  E --> ran  E  /\  F  e. Word  dom  E )  -> 
( ( A. i  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 i ) )  =  { ( P `
 i ) ,  ( P `  (
i  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) )
136135com12 29 . . 3  |-  ( ( E : dom  E --> ran  E  /\  F  e. Word  dom  E )  ->  (
( P : ( 0 ... ( # `  F ) ) --> V  /\  2  <_  ( # `
 P ) )  ->  ( ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( ( lastS  `  P )  =  ( P `  0 )  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) )
1373, 136sylan 469 . 2  |-  ( ( V USGrph  E  /\  F  e. Word  dom  E )  ->  (
( P : ( 0 ... ( # `  F ) ) --> V  /\  2  <_  ( # `
 P ) )  ->  ( ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) )  ->  ( ( lastS  `  P )  =  ( P `  0 )  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) ) ) )
1381373imp 1191 1  |-  ( ( ( V USGrph  E  /\  F  e. Word  dom  E )  /\  ( P :
( 0 ... ( # `
 F ) ) --> V  /\  2  <_ 
( # `  P ) )  /\  ( A. i  e.  ( 0..^ ( # `  F
) ) ( E `
 ( F `  i ) )  =  { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) )  ->  (
( lastS  `  P )  =  ( P `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  F )  -  1 ) ) { ( P `  i ) ,  ( P `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( P `  ( ( # `  F
)  -  1 ) ) ,  ( P `
 0 ) }  e.  ran  E ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   A.wral 2753    C_ wss 3413   {cpr 3973   class class class wbr 4394   dom cdm 4822   ran crn 4823    Fn wfn 5563   -->wf 5564   -1-1->wf1 5565   ` cfv 5568  (class class class)co 6277   RRcr 9520   0cc0 9521   1c1 9522    + caddc 9524    <_ cle 9658    - cmin 9840   NNcn 10575   2c2 10625   NN0cn0 10835   ZZcz 10904   ZZ>=cuz 11126   ...cfz 11724  ..^cfzo 11852   #chash 12450  Word cword 12581   lastS clsw 12582   USGrph cusg 24734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-card 8351  df-cda 8579  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-fzo 11853  df-hash 12451  df-word 12589  df-lsw 12590  df-usgra 24737
This theorem is referenced by:  clwlkisclwwlklem0  25192  clwlkfclwwlk  25248
  Copyright terms: Public domain W3C validator