Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwlkfclwwlk Structured version   Unicode version

Theorem clwlkfclwwlk 30470
Description: There is a function between the set of closed walks (defined as words) of length n and the set of closed walks of length n (in an undirected simple graph). (Contributed by Alexander van der Vekens, 25-Jun-2018.)
Hypotheses
Ref Expression
clwlkfclwwlk.1  |-  A  =  ( 1st `  c
)
clwlkfclwwlk.2  |-  B  =  ( 2nd `  c
)
clwlkfclwwlk.c  |-  C  =  { c  e.  ( V ClWalks  E )  |  (
# `  A )  =  N }
clwlkfclwwlk.f  |-  F  =  ( c  e.  C  |->  ( B substr  <. 0 ,  ( # `  A
) >. ) )
Assertion
Ref Expression
clwlkfclwwlk  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  F : C
--> ( ( V ClWWalksN  E ) `
 N ) )
Distinct variable groups:    E, c    N, c    V, c    C, c
Allowed substitution hints:    A( c)    B( c)    F( c)

Proof of Theorem clwlkfclwwlk
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 clwlkfclwwlk.c . . . . . 6  |-  C  =  { c  e.  ( V ClWalks  E )  |  (
# `  A )  =  N }
21rabeq2i 2964 . . . . 5  |-  ( c  e.  C  <->  ( c  e.  ( V ClWalks  E )  /\  ( # `  A
)  =  N ) )
3 clwlkfclwwlk.1 . . . . . . . 8  |-  A  =  ( 1st `  c
)
4 clwlkfclwwlk.2 . . . . . . . 8  |-  B  =  ( 2nd `  c
)
53, 4clwlkcompim 30380 . . . . . . 7  |-  ( c  e.  ( V ClWalks  E
)  ->  ( ( A  e. Word  dom  E  /\  B : ( 0 ... ( # `  A
) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A ) ) ( E `  ( A `
 i ) )  =  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) ) )
6 lencl 12241 . . . . . . . . 9  |-  ( A  e. Word  dom  E  ->  (
# `  A )  e.  NN0 )
7 clwlkfclwwlk.f . . . . . . . . . . . . . . . . . 18  |-  F  =  ( c  e.  C  |->  ( B substr  <. 0 ,  ( # `  A
) >. ) )
83, 4, 1, 7clwlkfclwwlk2wrd 30466 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  C  ->  B  e. Word  V )
98ad2antlr 726 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  B  e. Word  V )
10 swrdcl 12307 . . . . . . . . . . . . . . . 16  |-  ( B  e. Word  V  ->  ( B substr  <. 0 ,  (
# `  A ) >. )  e. Word  V )
119, 10syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( B substr  <. 0 ,  (
# `  A ) >. )  e. Word  V )
12 simp-5r 768 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  A  e. Word  dom  E )
13 simp1 988 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  V USGrph  E )
1412, 13anim12ci 567 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( V USGrph  E  /\  A  e. Word  dom  E ) )
15 simp-5r 768 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  B : ( 0 ... ( # `  A
) ) --> V )
16 prmuz2 13773 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  Prime  ->  N  e.  ( ZZ>= `  2 )
)
17 hashfzdm 12194 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  A
)  e.  NN0  /\  B : ( 0 ... ( # `  A
) ) --> V )  ->  ( # `  B
)  =  ( (
# `  A )  +  1 ) )
1817adantlr 714 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  ->  ( # `  B
)  =  ( (
# `  A )  +  1 ) )
19 eluz2 10859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
# `  A )  e.  ( ZZ>= `  2 )  <->  ( 2  e.  ZZ  /\  ( # `  A )  e.  ZZ  /\  2  <_  ( # `  A
) ) )
20 2re 10383 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  2  e.  RR
2120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
# `  A )  e.  ZZ  ->  2  e.  RR )
22 zre 10642 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
# `  A )  e.  ZZ  ->  ( # `  A
)  e.  RR )
23 peano2re 9534 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( (
# `  A )  e.  RR  ->  ( ( # `
 A )  +  1 )  e.  RR )
2422, 23syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
# `  A )  e.  ZZ  ->  ( ( # `
 A )  +  1 )  e.  RR )
2521, 22, 243jca 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ZZ  ->  ( 2  e.  RR  /\  ( # `
 A )  e.  RR  /\  ( (
# `  A )  +  1 )  e.  RR ) )
2625adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( # `  A
)  e.  ZZ  /\  2  <_  ( # `  A
) )  ->  (
2  e.  RR  /\  ( # `  A )  e.  RR  /\  (
( # `  A )  +  1 )  e.  RR ) )
27 simpr 461 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( # `  A
)  e.  ZZ  /\  2  <_  ( # `  A
) )  ->  2  <_  ( # `  A
) )
2822lep1d 10256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ZZ  ->  ( # `  A
)  <_  ( ( # `
 A )  +  1 ) )
2928adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( # `  A
)  e.  ZZ  /\  2  <_  ( # `  A
) )  ->  ( # `
 A )  <_ 
( ( # `  A
)  +  1 ) )
30 letr 9460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 2  e.  RR  /\  ( # `  A )  e.  RR  /\  (
( # `  A )  +  1 )  e.  RR )  ->  (
( 2  <_  ( # `
 A )  /\  ( # `  A )  <_  ( ( # `  A )  +  1 ) )  ->  2  <_  ( ( # `  A
)  +  1 ) ) )
3130imp 429 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( 2  e.  RR  /\  ( # `  A
)  e.  RR  /\  ( ( # `  A
)  +  1 )  e.  RR )  /\  ( 2  <_  ( # `
 A )  /\  ( # `  A )  <_  ( ( # `  A )  +  1 ) ) )  -> 
2  <_  ( ( # `
 A )  +  1 ) )
3226, 27, 29, 31syl12anc 1216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( # `  A
)  e.  ZZ  /\  2  <_  ( # `  A
) )  ->  2  <_  ( ( # `  A
)  +  1 ) )
33323adant1 1006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( 2  e.  ZZ  /\  ( # `  A )  e.  ZZ  /\  2  <_  ( # `  A
) )  ->  2  <_  ( ( # `  A
)  +  1 ) )
3419, 33sylbi 195 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  A )  e.  ( ZZ>= `  2 )  ->  2  <_  ( ( # `
 A )  +  1 ) )
3534a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  B
)  =  ( (
# `  A )  +  1 )  /\  ( # `  A )  =  N )  -> 
( ( # `  A
)  e.  ( ZZ>= ` 
2 )  ->  2  <_  ( ( # `  A
)  +  1 ) ) )
36 eleq1 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( N  =  ( # `  A
)  ->  ( N  e.  ( ZZ>= `  2 )  <->  (
# `  A )  e.  ( ZZ>= `  2 )
) )
3736eqcoms 2441 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  A )  =  N  ->  ( N  e.  ( ZZ>= `  2
)  <->  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
3837adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  B
)  =  ( (
# `  A )  +  1 )  /\  ( # `  A )  =  N )  -> 
( N  e.  (
ZZ>= `  2 )  <->  ( # `  A
)  e.  ( ZZ>= ` 
2 ) ) )
39 breq2 4291 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  B )  =  ( ( # `  A )  +  1 )  ->  ( 2  <_  ( # `  B
)  <->  2  <_  (
( # `  A )  +  1 ) ) )
4039adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  B
)  =  ( (
# `  A )  +  1 )  /\  ( # `  A )  =  N )  -> 
( 2  <_  ( # `
 B )  <->  2  <_  ( ( # `  A
)  +  1 ) ) )
4135, 38, 403imtr4d 268 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  B
)  =  ( (
# `  A )  +  1 )  /\  ( # `  A )  =  N )  -> 
( N  e.  (
ZZ>= `  2 )  -> 
2  <_  ( # `  B
) ) )
4241ex 434 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  B )  =  ( ( # `  A )  +  1 )  ->  ( ( # `
 A )  =  N  ->  ( N  e.  ( ZZ>= `  2 )  ->  2  <_  ( # `  B
) ) ) )
4318, 42syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  ->  ( ( # `
 A )  =  N  ->  ( N  e.  ( ZZ>= `  2 )  ->  2  <_  ( # `  B
) ) ) )
4443adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( # `  A )  e.  NN0  /\  A  e. Word  dom  E
)  /\  B :
( 0 ... ( # `
 A ) ) --> V )  /\  ( A. i  e.  (
0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  ->  (
( # `  A )  =  N  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  2  <_  ( # `  B
) ) ) )
4544imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( (
# `  A )  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A
) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A ) ) ( E `  ( A `
 i ) )  =  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) )  /\  ( # `  A )  =  N )  -> 
( N  e.  (
ZZ>= `  2 )  -> 
2  <_  ( # `  B
) ) )
4645adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  ( N  e.  ( ZZ>= ` 
2 )  ->  2  <_  ( # `  B
) ) )
4716, 46syl5com 30 . . . . . . . . . . . . . . . . . . . 20  |-  ( N  e.  Prime  ->  ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  2  <_  ( # `  B
) ) )
48473ad2ant3 1011 . . . . . . . . . . . . . . . . . . 19  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  ( (
( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  2  <_  ( # `  B
) ) )
4948impcom 430 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  2  <_  ( # `  B
) )
50 simp-4r 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( A. i  e.  (
0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )
51 clwlkisclwwlklem1 30402 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( V USGrph  E  /\  A  e. Word  dom  E )  /\  ( B :
( 0 ... ( # `
 A ) ) --> V  /\  2  <_ 
( # `  B ) )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  ->  (
( lastS  `  B )  =  ( B `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  e.  ran  E ) )
5214, 15, 49, 50, 51syl121anc 1223 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( lastS  `  B )  =  ( B `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  e.  ran  E ) )
533, 4, 1, 7clwlkfclwwlk1hash 30468 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( c  e.  C  ->  ( # `
 A )  e.  ( 0 ... ( # `
 B ) ) )
54 simp2 989 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  B  e. Word  V )
55 simp1 988 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  ( # `  A
)  e.  ( 0 ... ( # `  B
) ) )
56 elfzelz 11445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  A )  e.  ( 0 ... ( # `
 B ) )  ->  ( # `  A
)  e.  ZZ )
57 peano2zm 10680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ZZ  ->  ( ( # `
 A )  - 
1 )  e.  ZZ )
58 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ZZ  ->  ( # `  A
)  e.  ZZ )
5922lem1d 10258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ZZ  ->  ( ( # `
 A )  - 
1 )  <_  ( # `
 A ) )
60 eluz2 10859 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ( ZZ>= `  ( ( # `
 A )  - 
1 ) )  <->  ( (
( # `  A )  -  1 )  e.  ZZ  /\  ( # `  A )  e.  ZZ  /\  ( ( # `  A
)  -  1 )  <_  ( # `  A
) ) )
6157, 58, 59, 60syl3anbrc 1172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  A )  e.  ZZ  ->  ( # `  A
)  e.  ( ZZ>= `  ( ( # `  A
)  -  1 ) ) )
62 fzoss2 11569 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  A )  e.  ( ZZ>= `  ( ( # `
 A )  - 
1 ) )  -> 
( 0..^ ( (
# `  A )  -  1 ) ) 
C_  ( 0..^ (
# `  A )
) )
6356, 61, 623syl 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
# `  A )  e.  ( 0 ... ( # `
 B ) )  ->  ( 0..^ ( ( # `  A
)  -  1 ) )  C_  ( 0..^ ( # `  A
) ) )
6463sselda 3351 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  i  e.  ( 0..^ ( # `  A
) ) )
65643adant2 1007 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  i  e.  ( 0..^ ( # `  A
) ) )
66 swrd0fv 12327 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 0 ... ( # `  B
) )  /\  i  e.  ( 0..^ ( # `  A ) ) )  ->  ( ( B substr  <. 0 ,  ( # `  A ) >. ) `  i )  =  ( B `  i ) )
6754, 55, 65, 66syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  i )  =  ( B `  i ) )
6867eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  ( B `  i )  =  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) )
69 elfzom1elp1fzo 30171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( # `  A
)  e.  ZZ  /\  i  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )  ->  (
i  +  1 )  e.  ( 0..^ (
# `  A )
) )
7056, 69sylan 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  ( i  +  1 )  e.  ( 0..^ ( # `  A ) ) )
71703adant2 1007 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  ( i  +  1 )  e.  ( 0..^ ( # `  A ) ) )
72 swrd0fv 12327 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 0 ... ( # `  B
) )  /\  (
i  +  1 )  e.  ( 0..^ (
# `  A )
) )  ->  (
( B substr  <. 0 ,  ( # `  A
) >. ) `  (
i  +  1 ) )  =  ( B `
 ( i  +  1 ) ) )
7372eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 0 ... ( # `  B
) )  /\  (
i  +  1 )  e.  ( 0..^ (
# `  A )
) )  ->  ( B `  ( i  +  1 ) )  =  ( ( B substr  <. 0 ,  ( # `  A ) >. ) `  ( i  +  1 ) ) )
7454, 55, 71, 73syl3anc 1218 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  ( B `  ( i  +  1 ) )  =  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  (
i  +  1 ) ) )
7568, 74preq12d 3957 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  B  e. Word  V  /\  i  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )  ->  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  =  { ( ( B substr  <. 0 ,  ( # `  A ) >. ) `  i ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  (
i  +  1 ) ) } )
76753exp 1186 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  A )  e.  ( 0 ... ( # `
 B ) )  ->  ( B  e. Word  V  ->  ( i  e.  ( 0..^ ( (
# `  A )  -  1 ) )  ->  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  =  {
( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) } ) ) )
7753, 8, 76sylc 60 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( c  e.  C  ->  (
i  e.  ( 0..^ ( ( # `  A
)  -  1 ) )  ->  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  =  { ( ( B substr  <. 0 ,  ( # `  A ) >. ) `  i ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  (
i  +  1 ) ) } ) )
7877imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( c  e.  C  /\  i  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )  ->  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  =  { ( ( B substr  <. 0 ,  ( # `  A ) >. ) `  i ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  (
i  +  1 ) ) } )
7978eleq1d 2504 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( c  e.  C  /\  i  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )  ->  ( { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  e.  ran  E  <->  { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E
) )
8079ralbidva 2726 . . . . . . . . . . . . . . . . . . . 20  |-  ( c  e.  C  ->  ( A. i  e.  (
0..^ ( ( # `  A )  -  1 ) ) { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ ( ( # `  A )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E
) )
8180ad2antlr 726 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( A. i  e.  (
0..^ ( ( # `  A )  -  1 ) ) { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ ( ( # `  A )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E
) )
823, 4, 1, 7clwlkfclwwlk2sswd 30469 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( c  e.  C  ->  ( # `
 A )  =  ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) )
8382oveq1d 6101 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( c  e.  C  ->  (
( # `  A )  -  1 )  =  ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) )
8483ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( # `  A )  -  1 )  =  ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) )
8584oveq2d 6102 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
0..^ ( ( # `  A )  -  1 ) )  =  ( 0..^ ( ( # `  ( B substr  <. 0 ,  ( # `  A
) >. ) )  - 
1 ) ) )
8685raleqdv 2918 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( A. i  e.  (
0..^ ( ( # `  A )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E
) )
8781, 86bitrd 253 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( A. i  e.  (
0..^ ( ( # `  A )  -  1 ) ) { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  e.  ran  E  <->  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  ( # `  A
) >. ) )  - 
1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E
) )
88 eleq1 2498 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( N  =  ( # `  A
)  ->  ( N  e.  Prime 
<->  ( # `  A
)  e.  Prime )
)
8988biimpd 207 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  =  ( # `  A
)  ->  ( N  e.  Prime  ->  ( # `  A
)  e.  Prime )
)
9089eqcoms 2441 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  A )  =  N  ->  ( N  e.  Prime  ->  ( # `  A )  e.  Prime ) )
91 prmnn 13758 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( (
# `  A )  e.  Prime  ->  ( # `  A
)  e.  NN )
92 elfz2nn0 11472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( (
# `  A )  e.  ( 0 ... ( # `
 B ) )  <-> 
( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) ) )
93 1z 10668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  1  e.  ZZ
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0 )  -> 
1  e.  ZZ )
95 nn0z 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
# `  B )  e.  NN0  ->  ( # `  B
)  e.  ZZ )
9695adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0 )  -> 
( # `  B )  e.  ZZ )
97 nn0z 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  |-  ( (
# `  A )  e.  NN0  ->  ( # `  A
)  e.  ZZ )
9897adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0 )  -> 
( # `  A )  e.  ZZ )
9994, 96, 983jca 1168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0 )  -> 
( 1  e.  ZZ  /\  ( # `  B
)  e.  ZZ  /\  ( # `  A )  e.  ZZ ) )
100993adant3 1008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  ->  ( 1  e.  ZZ  /\  ( # `
 B )  e.  ZZ  /\  ( # `  A )  e.  ZZ ) )
101100adantr 465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  /\  ( # `  A )  e.  NN )  ->  ( 1  e.  ZZ  /\  ( # `  B )  e.  ZZ  /\  ( # `  A
)  e.  ZZ ) )
102 simp3 990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  ->  ( # `  A
)  <_  ( # `  B
) )
103 nnge1 10340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( (
# `  A )  e.  NN  ->  1  <_  (
# `  A )
)
104102, 103anim12ci 567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  /\  ( # `  A )  e.  NN )  ->  ( 1  <_ 
( # `  A )  /\  ( # `  A
)  <_  ( # `  B
) ) )
105101, 104jca 532 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( ( ( # `  A
)  e.  NN0  /\  ( # `  B )  e.  NN0  /\  ( # `
 A )  <_ 
( # `  B ) )  /\  ( # `  A )  e.  NN )  ->  ( ( 1  e.  ZZ  /\  ( # `
 B )  e.  ZZ  /\  ( # `  A )  e.  ZZ )  /\  ( 1  <_ 
( # `  A )  /\  ( # `  A
)  <_  ( # `  B
) ) ) )
10692, 105sylanb 472 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  ( # `
 A )  e.  NN )  ->  (
( 1  e.  ZZ  /\  ( # `  B
)  e.  ZZ  /\  ( # `  A )  e.  ZZ )  /\  ( 1  <_  ( # `
 A )  /\  ( # `  A )  <_  ( # `  B
) ) ) )
107 elfz2 11436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( (
# `  A )  e.  ( 1 ... ( # `
 B ) )  <-> 
( ( 1  e.  ZZ  /\  ( # `  B )  e.  ZZ  /\  ( # `  A
)  e.  ZZ )  /\  ( 1  <_ 
( # `  A )  /\  ( # `  A
)  <_  ( # `  B
) ) ) )
108106, 107sylibr 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  ( # `
 A )  e.  NN )  ->  ( # `
 A )  e.  ( 1 ... ( # `
 B ) ) )
109 swrd0fvlsw 12331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 1 ... ( # `  B
) ) )  -> 
( lastS  `  ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  ( B `  (
( # `  A )  -  1 ) ) )
110109eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 1 ... ( # `  B
) ) )  -> 
( B `  (
( # `  A )  -  1 ) )  =  ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) )
111 swrd0fv0 12328 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 1 ... ( # `  B
) ) )  -> 
( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
)  =  ( B `
 0 ) )
112111eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 1 ... ( # `  B
) ) )  -> 
( B `  0
)  =  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) )
113110, 112preq12d 3957 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( B  e. Word  V  /\  ( # `  A )  e.  ( 1 ... ( # `  B
) ) )  ->  { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) } )
114113expcom 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  A )  e.  ( 1 ... ( # `
 B ) )  ->  ( B  e. Word  V  ->  { ( B `
 ( ( # `  A )  -  1 ) ) ,  ( B `  0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A
) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) } ) )
115108, 114syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( # `  A
)  e.  ( 0 ... ( # `  B
) )  /\  ( # `
 A )  e.  NN )  ->  ( B  e. Word  V  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) )
116115ex 434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( (
# `  A )  e.  ( 0 ... ( # `
 B ) )  ->  ( ( # `  A )  e.  NN  ->  ( B  e. Word  V  ->  { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) } ) ) )
117116com23 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( (
# `  A )  e.  ( 0 ... ( # `
 B ) )  ->  ( B  e. Word  V  ->  ( ( # `  A )  e.  NN  ->  { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) } ) ) )
11853, 8, 117sylc 60 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( c  e.  C  ->  (
( # `  A )  e.  NN  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) )
11991, 118syl5com 30 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
# `  A )  e.  Prime  ->  ( c  e.  C  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) )
12090, 119syl6 33 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  A )  =  N  ->  ( N  e.  Prime  ->  ( c  e.  C  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) ) )
121120com23 78 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
# `  A )  =  N  ->  ( c  e.  C  ->  ( N  e.  Prime  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) ) )
122121adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( (
# `  A )  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A
) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A ) ) ( E `  ( A `
 i ) )  =  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) )  /\  ( # `  A )  =  N )  -> 
( c  e.  C  ->  ( N  e.  Prime  ->  { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) } ) ) )
123122imp 429 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  ( N  e.  Prime  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) )
124123com12 31 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  Prime  ->  ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) )
1251243ad2ant3 1011 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  ( (
( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } ) )
126125impcom 430 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  { ( B `  ( (
# `  A )  -  1 ) ) ,  ( B ` 
0 ) }  =  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A ) >. )
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  0 ) } )
127126eleq1d 2504 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( { ( B `  ( ( # `  A
)  -  1 ) ) ,  ( B `
 0 ) }  e.  ran  E  <->  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A
) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) )
12887, 1273anbi23d 1292 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( ( lastS  `  B
)  =  ( B `
 0 )  /\  A. i  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  e.  ran  E  /\  { ( B `
 ( ( # `  A )  -  1 ) ) ,  ( B `  0 ) }  e.  ran  E
)  <->  ( ( lastS  `  B
)  =  ( B `
 0 )  /\  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) ) )
12952, 128mpbid 210 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( lastS  `  B )  =  ( B `  0
)  /\  A. i  e.  ( 0..^ ( (
# `  ( B substr  <.
0 ,  ( # `  A ) >. )
)  -  1 ) ) { ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  i ) ,  ( ( B substr  <. 0 ,  ( # `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  ( # `  A
) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) )
130 3simpc 987 . . . . . . . . . . . . . . . 16  |-  ( ( ( lastS  `  B )  =  ( B ` 
0 )  /\  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E )  ->  ( A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) )
131129, 130syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( A. i  e.  (
0..^ ( ( # `  ( B substr  <. 0 ,  ( # `  A
) >. ) )  - 
1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) )
132 3anass 969 . . . . . . . . . . . . . . 15  |-  ( ( ( B substr  <. 0 ,  ( # `  A
) >. )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  ( # `  A
) >. ) )  - 
1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E )  <->  ( ( B substr  <. 0 ,  ( # `  A ) >. )  e. Word  V  /\  ( A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) ) )
13311, 131, 132sylanbrc 664 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( B substr  <. 0 ,  ( # `  A
) >. )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  ( # `  A
) >. ) )  - 
1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) )
134 usgrav 23221 . . . . . . . . . . . . . . . . 17  |-  ( V USGrph  E  ->  ( V  e. 
_V  /\  E  e.  _V ) )
1351343ad2ant1 1009 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  ( V  e.  _V  /\  E  e. 
_V ) )
136135adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( V  e.  _V  /\  E  e.  _V ) )
137 isclwwlk 30384 . . . . . . . . . . . . . . 15  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  ( ( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( V ClWWalks  E )  <->  ( ( B substr  <. 0 ,  (
# `  A ) >. )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) ) )
138136, 137syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( V ClWWalks  E )  <->  ( ( B substr  <. 0 ,  (
# `  A ) >. )  e. Word  V  /\  A. i  e.  ( 0..^ ( ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  -  1 ) ) { ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  i
) ,  ( ( B substr  <. 0 ,  (
# `  A ) >. ) `  ( i  +  1 ) ) }  e.  ran  E  /\  { ( lastS  `  ( B substr  <. 0 ,  (
# `  A ) >. ) ) ,  ( ( B substr  <. 0 ,  ( # `  A
) >. ) `  0
) }  e.  ran  E ) ) )
139133, 138mpbird 232 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( B substr  <. 0 ,  (
# `  A ) >. )  e.  ( V ClWWalks  E ) )
14082eqeq1d 2446 . . . . . . . . . . . . . . . . 17  |-  ( c  e.  C  ->  (
( # `  A )  =  N  <->  ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  =  N ) )
141140biimpcd 224 . . . . . . . . . . . . . . . 16  |-  ( (
# `  A )  =  N  ->  ( c  e.  C  ->  ( # `
 ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  N ) )
142141adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
# `  A )  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A
) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A ) ) ( E `  ( A `
 i ) )  =  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) )  /\  ( # `  A )  =  N )  -> 
( c  e.  C  ->  ( # `  ( B substr  <. 0 ,  (
# `  A ) >. ) )  =  N ) )
143142imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  ->  ( # `
 ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  N )
144143adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( # `
 ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  N )
145139, 144jca 532 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( V ClWWalks  E )  /\  ( # `
 ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  N ) )
146134simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( V USGrph  E  ->  V  e.  _V )
147146adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  E  /\  N  e. 
Prime )  ->  V  e. 
_V )
148134simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( V USGrph  E  ->  E  e.  _V )
149148adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  E  /\  N  e. 
Prime )  ->  E  e. 
_V )
150 prmnn 13758 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  Prime  ->  N  e.  NN )
151150nnnn0d 10628 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  Prime  ->  N  e. 
NN0 )
152151adantl 466 . . . . . . . . . . . . . . . 16  |-  ( ( V USGrph  E  /\  N  e. 
Prime )  ->  N  e. 
NN0 )
153147, 149, 1523jca 1168 . . . . . . . . . . . . . . 15  |-  ( ( V USGrph  E  /\  N  e. 
Prime )  ->  ( V  e.  _V  /\  E  e.  _V  /\  N  e. 
NN0 ) )
1541533adant2 1007 . . . . . . . . . . . . . 14  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  ( V  e.  _V  /\  E  e. 
_V  /\  N  e.  NN0 ) )
155154adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( V  e.  _V  /\  E  e.  _V  /\  N  e. 
NN0 ) )
156 isclwwlkn 30385 . . . . . . . . . . . . 13  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  N  e.  NN0 )  ->  (
( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N )  <->  ( ( B substr  <. 0 ,  (
# `  A ) >. )  e.  ( V ClWWalks  E )  /\  ( # `
 ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  N ) ) )
157155, 156syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  (
( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N )  <->  ( ( B substr  <. 0 ,  (
# `  A ) >. )  e.  ( V ClWWalks  E )  /\  ( # `
 ( B substr  <. 0 ,  ( # `  A
) >. ) )  =  N ) ) )
158145, 157mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  /\  ( # `
 A )  =  N )  /\  c  e.  C )  /\  ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime ) )  ->  ( B substr  <. 0 ,  (
# `  A ) >. )  e.  ( ( V ClWWalksN  E ) `  N
) )
159158exp31 604 . . . . . . . . . 10  |-  ( ( ( ( ( (
# `  A )  e.  NN0  /\  A  e. Word  dom  E )  /\  B : ( 0 ... ( # `  A
) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A ) ) ( E `  ( A `
 i ) )  =  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) )  /\  ( # `  A )  =  N )  -> 
( c  e.  C  ->  ( ( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  ->  ( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N ) ) ) )
160159exp41 610 . . . . . . . . 9  |-  ( ( ( # `  A
)  e.  NN0  /\  A  e. Word  dom  E )  ->  ( B :
( 0 ... ( # `
 A ) ) --> V  ->  ( ( A. i  e.  (
0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) )  ->  ( ( # `
 A )  =  N  ->  ( c  e.  C  ->  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  ( B substr  <.
0 ,  ( # `  A ) >. )  e.  ( ( V ClWWalksN  E ) `
 N ) ) ) ) ) ) )
1616, 160mpancom 669 . . . . . . . 8  |-  ( A  e. Word  dom  E  ->  ( B : ( 0 ... ( # `  A
) ) --> V  -> 
( ( A. i  e.  ( 0..^ ( # `  A ) ) ( E `  ( A `
 i ) )  =  { ( B `
 i ) ,  ( B `  (
i  +  1 ) ) }  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) )  ->  (
( # `  A )  =  N  ->  (
c  e.  C  -> 
( ( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  ->  ( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N ) ) ) ) ) ) )
162161imp31 432 . . . . . . 7  |-  ( ( ( A  e. Word  dom  E  /\  B : ( 0 ... ( # `  A ) ) --> V )  /\  ( A. i  e.  ( 0..^ ( # `  A
) ) ( E `
 ( A `  i ) )  =  { ( B `  i ) ,  ( B `  ( i  +  1 ) ) }  /\  ( B `
 0 )  =  ( B `  ( # `
 A ) ) ) )  ->  (
( # `  A )  =  N  ->  (
c  e.  C  -> 
( ( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  ->  ( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N ) ) ) ) )
1635, 162syl 16 . . . . . 6  |-  ( c  e.  ( V ClWalks  E
)  ->  ( ( # `
 A )  =  N  ->  ( c  e.  C  ->  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  ( B substr  <.
0 ,  ( # `  A ) >. )  e.  ( ( V ClWWalksN  E ) `
 N ) ) ) ) )
164163imp 429 . . . . 5  |-  ( ( c  e.  ( V ClWalks  E )  /\  ( # `
 A )  =  N )  ->  (
c  e.  C  -> 
( ( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  ->  ( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N ) ) ) )
1652, 164sylbi 195 . . . 4  |-  ( c  e.  C  ->  (
c  e.  C  -> 
( ( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  ->  ( B substr  <. 0 ,  ( # `  A
) >. )  e.  ( ( V ClWWalksN  E ) `  N ) ) ) )
166165pm2.43i 47 . . 3  |-  ( c  e.  C  ->  (
( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  ->  ( B substr  <. 0 ,  (
# `  A ) >. )  e.  ( ( V ClWWalksN  E ) `  N
) ) )
167166impcom 430 . 2  |-  ( ( ( V USGrph  E  /\  V  e.  Fin  /\  N  e.  Prime )  /\  c  e.  C )  ->  ( B substr  <. 0 ,  (
# `  A ) >. )  e.  ( ( V ClWWalksN  E ) `  N
) )
168167, 7fmptd 5862 1  |-  ( ( V USGrph  E  /\  V  e. 
Fin  /\  N  e.  Prime )  ->  F : C
--> ( ( V ClWWalksN  E ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2710   {crab 2714   _Vcvv 2967    C_ wss 3323   {cpr 3874   <.cop 3878   class class class wbr 4287    e. cmpt 4345   dom cdm 4835   ran crn 4836   -->wf 5409   ` cfv 5413  (class class class)co 6086   1stc1st 6570   2ndc2nd 6571   Fincfn 7302   RRcr 9273   0cc0 9274   1c1 9275    + caddc 9277    <_ cle 9411    - cmin 9587   NNcn 10314   2c2 10363   NN0cn0 10571   ZZcz 10638   ZZ>=cuz 10853   ...cfz 11429  ..^cfzo 11540   #chash 12095  Word cword 12213   lastS clsw 12214   substr csubstr 12217   Primecprime 13755   USGrph cusg 23215   ClWalks cclwlk 30365   ClWWalks cclwwlk 30366   ClWWalksN cclwwlkn 30367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-pm 7209  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-hash 12096  df-word 12221  df-lsw 12222  df-substr 12225  df-dvds 13528  df-prm 13756  df-usgra 23217  df-wlk 23366  df-clwlk 30368  df-clwwlk 30369  df-clwwlkn 30370
This theorem is referenced by:  clwlkfoclwwlk  30471  clwlkf1clwwlk  30476
  Copyright terms: Public domain W3C validator