Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clwlkcompim Structured version   Unicode version

Theorem clwlkcompim 30568
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018.)
Hypotheses
Ref Expression
clwlkcomp.1  |-  F  =  ( 1st `  W
)
clwlkcomp.2  |-  P  =  ( 2nd `  W
)
Assertion
Ref Expression
clwlkcompim  |-  ( W  e.  ( V ClWalks  E
)  ->  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  /\  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) )
Distinct variable groups:    k, E    k, F    P, k    k, V   
k, W

Proof of Theorem clwlkcompim
Dummy variables  e 
f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-clwlk 30556 . . . 4  |- ClWalks  =  ( v  e.  _V , 
e  e.  _V  |->  {
<. f ,  p >.  |  ( f ( v Walks 
e ) p  /\  ( p `  0
)  =  ( p `
 ( # `  f
) ) ) } )
2 vex 3074 . . . . 5  |-  v  e. 
_V
3 vex 3074 . . . . 5  |-  e  e. 
_V
4 clwlk 30559 . . . . . 6  |-  ( ( v  e.  _V  /\  e  e.  _V )  ->  ( v ClWalks  e )  =  { <. f ,  p >.  |  (
f ( v Walks  e
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
5 ovex 6218 . . . . . 6  |-  ( v ClWalks 
e )  e.  _V
64, 5syl6eqelr 2548 . . . . 5  |-  ( ( v  e.  _V  /\  e  e.  _V )  ->  { <. f ,  p >.  |  ( f ( v Walks  e ) p  /\  ( p ` 
0 )  =  ( p `  ( # `  f ) ) ) }  e.  _V )
72, 3, 6mp2an 672 . . . 4  |-  { <. f ,  p >.  |  ( f ( v Walks  e
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) }  e.  _V
8 oveq12 6202 . . . . . . 7  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v Walks  e )  =  ( V Walks  E
) )
98breqd 4404 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( v Walks 
e ) p  <->  f ( V Walks  E ) p ) )
109anbi1d 704 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( f ( v Walks  e ) p  /\  ( p ` 
0 )  =  ( p `  ( # `  f ) ) )  <-> 
( f ( V Walks 
E ) p  /\  ( p `  0
)  =  ( p `
 ( # `  f
) ) ) ) )
1110opabbidv 4456 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  { <. f ,  p >.  |  ( f ( v Walks  e ) p  /\  ( p ` 
0 )  =  ( p `  ( # `  f ) ) ) }  =  { <. f ,  p >.  |  ( f ( V Walks  E
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) } )
121, 7, 11elovmpt2 6410 . . 3  |-  ( W  e.  ( V ClWalks  E
)  <->  ( V  e. 
_V  /\  E  e.  _V  /\  W  e.  { <. f ,  p >.  |  ( f ( V Walks 
E ) p  /\  ( p `  0
)  =  ( p `
 ( # `  f
) ) ) } ) )
13 elopaelxp 30276 . . . 4  |-  ( W  e.  { <. f ,  p >.  |  (
f ( V Walks  E
) p  /\  (
p `  0 )  =  ( p `  ( # `  f ) ) ) }  ->  W  e.  ( _V  X.  _V ) )
14 clwlkcomp.1 . . . . . 6  |-  F  =  ( 1st `  W
)
15 clwlkcomp.2 . . . . . 6  |-  P  =  ( 2nd `  W
)
1614, 15clwlkcomp 30567 . . . . 5  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  W  e.  ( _V  X.  _V ) )  ->  ( W  e.  ( V ClWalks  E )  <->  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  /\  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) ) )
1716biimpd 207 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  W  e.  ( _V  X.  _V ) )  ->  ( W  e.  ( V ClWalks  E )  ->  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  /\  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) ) )
1813, 17syl3an3 1254 . . 3  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  W  e.  { <. f ,  p >.  |  ( f ( V Walks  E ) p  /\  ( p ` 
0 )  =  ( p `  ( # `  f ) ) ) } )  ->  ( W  e.  ( V ClWalks  E )  ->  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  /\  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) ) )
1912, 18sylbi 195 . 2  |-  ( W  e.  ( V ClWalks  E
)  ->  ( W  e.  ( V ClWalks  E )  ->  ( ( F  e. Word  dom  E  /\  P :
( 0 ... ( # `
 F ) ) --> V )  /\  ( A. k  e.  (
0..^ ( # `  F
) ) ( E `
 ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  /\  ( P `
 0 )  =  ( P `  ( # `
 F ) ) ) ) ) )
2019pm2.43i 47 1  |-  ( W  e.  ( V ClWalks  E
)  ->  ( ( F  e. Word  dom  E  /\  P : ( 0 ... ( # `  F
) ) --> V )  /\  ( A. k  e.  ( 0..^ ( # `  F ) ) ( E `  ( F `
 k ) )  =  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  /\  ( P `  0 )  =  ( P `  ( # `  F ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   A.wral 2795   _Vcvv 3071   {cpr 3980   class class class wbr 4393   {copab 4450    X. cxp 4939   dom cdm 4941   -->wf 5515   ` cfv 5519  (class class class)co 6193   1stc1st 6678   2ndc2nd 6679   0cc0 9386   1c1 9387    + caddc 9389   ...cfz 11547  ..^cfzo 11658   #chash 12213  Word cword 12332   Walks cwalk 23550   ClWalks cclwlk 30553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-pm 7320  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-card 8213  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548  df-fzo 11659  df-hash 12214  df-word 12340  df-wlk 23560  df-clwlk 30556
This theorem is referenced by:  clwlkfclwwlk2wrd  30654  clwlkfclwwlk1hash  30656  clwlkfclwwlk  30658  clwlkf1clwwlklem1  30660  clwlkf1clwwlklem2  30661  clwlkf1clwwlklem3  30662
  Copyright terms: Public domain W3C validator