MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Structured version   Unicode version

Theorem clsval2 18554
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \ 
( ( int `  J
) `  ( X  \  S ) ) ) )

Proof of Theorem clsval2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2722 . . . . . 6  |-  { z  e.  ( Clsd `  J
)  |  S  C_  z }  =  {
z  |  ( z  e.  ( Clsd `  J
)  /\  S  C_  z
) }
2 clscld.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
32cldopn 18535 . . . . . . . . . . . 12  |-  ( z  e.  ( Clsd `  J
)  ->  ( X  \  z )  e.  J
)
43ad2antrl 722 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  J
)
5 sscon 3487 . . . . . . . . . . . . 13  |-  ( S 
C_  z  ->  ( X  \  z )  C_  ( X  \  S ) )
65ad2antll 723 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  C_  ( X  \  S ) )
72topopn 18419 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  X  e.  J )
8 difexg 4437 . . . . . . . . . . . . . 14  |-  ( X  e.  J  ->  ( X  \  z )  e. 
_V )
9 elpwg 3865 . . . . . . . . . . . . . 14  |-  ( ( X  \  z )  e.  _V  ->  (
( X  \  z
)  e.  ~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
107, 8, 93syl 20 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
( X  \  z
)  e.  ~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
1110ad2antrr 720 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( ( X  \  z )  e. 
~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
126, 11mpbird 232 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  ~P ( X  \  S ) )
134, 12elind 3537 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  ( J  i^i  ~P ( X  \  S ) ) )
142cldss 18533 . . . . . . . . . . . . 13  |-  ( z  e.  ( Clsd `  J
)  ->  z  C_  X )
1514ad2antrl 722 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  z  C_  X )
16 dfss4 3581 . . . . . . . . . . . 12  |-  ( z 
C_  X  <->  ( X  \  ( X  \  z
) )  =  z )
1715, 16sylib 196 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  ( X  \  z
) )  =  z )
1817eqcomd 2446 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  z  =  ( X  \  ( X  \  z ) ) )
19 difeq2 3465 . . . . . . . . . . . 12  |-  ( x  =  ( X  \ 
z )  ->  ( X  \  x )  =  ( X  \  ( X  \  z ) ) )
2019eqeq2d 2452 . . . . . . . . . . 11  |-  ( x  =  ( X  \ 
z )  ->  (
z  =  ( X 
\  x )  <->  z  =  ( X  \  ( X  \  z ) ) ) )
2120rspcev 3070 . . . . . . . . . 10  |-  ( ( ( X  \  z
)  e.  ( J  i^i  ~P ( X 
\  S ) )  /\  z  =  ( X  \  ( X 
\  z ) ) )  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) )
2213, 18, 21syl2anc 656 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) )
2322ex 434 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( z  e.  ( Clsd `  J
)  /\  S  C_  z
)  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) ) )
24 simpl 454 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  J  e.  Top )
25 elin 3536 . . . . . . . . . . . . 13  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  <->  ( x  e.  J  /\  x  e.  ~P ( X  \  S ) ) )
2625simplbi 457 . . . . . . . . . . . 12  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  ->  x  e.  J )
272opncld 18537 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( X  \  x
)  e.  ( Clsd `  J ) )
2824, 26, 27syl2an 474 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( X  \  x )  e.  (
Clsd `  J )
)
2925simprbi 461 . . . . . . . . . . . . . 14  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  ->  x  e.  ~P ( X  \  S ) )
3029adantl 463 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  e.  ~P ( X  \  S
) )
3130elpwid 3867 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  C_  ( X  \  S ) )
3231difss2d 3483 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  C_  X
)
33 simplr 749 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  S  C_  X
)
34 ssconb 3486 . . . . . . . . . . . . 13  |-  ( ( x  C_  X  /\  S  C_  X )  -> 
( x  C_  ( X  \  S )  <->  S  C_  ( X  \  x ) ) )
3532, 33, 34syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( x  C_  ( X  \  S
)  <->  S  C_  ( X 
\  x ) ) )
3631, 35mpbid 210 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  S  C_  ( X  \  x ) )
3728, 36jca 529 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( ( X  \  x )  e.  ( Clsd `  J
)  /\  S  C_  ( X  \  x ) ) )
38 eleq1 2501 . . . . . . . . . . 11  |-  ( z  =  ( X  \  x )  ->  (
z  e.  ( Clsd `  J )  <->  ( X  \  x )  e.  (
Clsd `  J )
) )
39 sseq2 3375 . . . . . . . . . . 11  |-  ( z  =  ( X  \  x )  ->  ( S  C_  z  <->  S  C_  ( X  \  x ) ) )
4038, 39anbi12d 705 . . . . . . . . . 10  |-  ( z  =  ( X  \  x )  ->  (
( z  e.  (
Clsd `  J )  /\  S  C_  z )  <-> 
( ( X  \  x )  e.  (
Clsd `  J )  /\  S  C_  ( X 
\  x ) ) ) )
4137, 40syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( z  =  ( X  \  x )  ->  (
z  e.  ( Clsd `  J )  /\  S  C_  z ) ) )
4241rexlimdva 2839 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x )  ->  ( z  e.  ( Clsd `  J
)  /\  S  C_  z
) ) )
4323, 42impbid 191 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( z  e.  ( Clsd `  J
)  /\  S  C_  z
)  <->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X 
\  x ) ) )
4443abbidv 2555 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { z  |  ( z  e.  ( Clsd `  J )  /\  S  C_  z ) }  =  { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
451, 44syl5eq 2485 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { z  e.  (
Clsd `  J )  |  S  C_  z }  =  { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X 
\  x ) } )
4645inteqd 4130 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { z  e.  (
Clsd `  J )  |  S  C_  z }  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
47 difexg 4437 . . . . . . 7  |-  ( X  e.  J  ->  ( X  \  x )  e. 
_V )
4847ralrimivw 2798 . . . . . 6  |-  ( X  e.  J  ->  A. x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  e.  _V )
49 dfiin2g 4200 . . . . . 6  |-  ( A. x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  e.  _V  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
507, 48, 493syl 20 . . . . 5  |-  ( J  e.  Top  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
5150adantr 462 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^|_ x  e.  ( J  i^i  ~P ( X 
\  S ) ) ( X  \  x
)  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
5246, 51eqtr4d 2476 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { z  e.  (
Clsd `  J )  |  S  C_  z }  =  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x
) )
532clsval 18541 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { z  e.  ( Clsd `  J
)  |  S  C_  z } )
54 uniiun 4220 . . . . . 6  |-  U. ( J  i^i  ~P ( X 
\  S ) )  =  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x
5554difeq2i 3468 . . . . 5  |-  ( X 
\  U. ( J  i^i  ~P ( X  \  S
) ) )  =  ( X  \  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x )
5655a1i 11 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  U. ( J  i^i  ~P ( X  \  S ) ) )  =  ( X 
\  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
57 0opn 18417 . . . . . . 7  |-  ( J  e.  Top  ->  (/)  e.  J
)
5857adantr 462 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  J )
59 0elpw 4458 . . . . . . 7  |-  (/)  e.  ~P ( X  \  S )
6059a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  ~P ( X  \  S ) )
6158, 60elind 3537 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  ( J  i^i  ~P ( X  \  S
) ) )
62 ne0i 3640 . . . . 5  |-  ( (/)  e.  ( J  i^i  ~P ( X  \  S ) )  ->  ( J  i^i  ~P ( X  \  S ) )  =/=  (/) )
63 iindif2 4236 . . . . 5  |-  ( ( J  i^i  ~P ( X  \  S ) )  =/=  (/)  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  ( X  \  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
6461, 62, 633syl 20 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^|_ x  e.  ( J  i^i  ~P ( X 
\  S ) ) ( X  \  x
)  =  ( X 
\  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
6556, 64eqtr4d 2476 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  U. ( J  i^i  ~P ( X  \  S ) ) )  =  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x ) )
6652, 53, 653eqtr4d 2483 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \  U. ( J  i^i  ~P ( X  \  S ) ) ) )
67 difssd 3481 . . . 4  |-  ( S 
C_  X  ->  ( X  \  S )  C_  X )
682ntrval 18540 . . . 4  |-  ( ( J  e.  Top  /\  ( X  \  S ) 
C_  X )  -> 
( ( int `  J
) `  ( X  \  S ) )  = 
U. ( J  i^i  ~P ( X  \  S
) ) )
6967, 68sylan2 471 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  ( X  \  S ) )  = 
U. ( J  i^i  ~P ( X  \  S
) ) )
7069difeq2d 3471 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( int `  J
) `  ( X  \  S ) ) )  =  ( X  \  U. ( J  i^i  ~P ( X  \  S ) ) ) )
7166, 70eqtr4d 2476 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \ 
( ( int `  J
) `  ( X  \  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   {cab 2427    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    \ cdif 3322    i^i cin 3324    C_ wss 3325   (/)c0 3634   ~Pcpw 3857   U.cuni 4088   |^|cint 4125   U_ciun 4168   |^|_ciin 4169   ` cfv 5415   Topctop 18398   Clsdccld 18520   intcnt 18521   clsccl 18522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-top 18403  df-cld 18523  df-ntr 18524  df-cls 18525
This theorem is referenced by:  ntrval2  18555  clsdif  18557  cmclsopn  18566  bcth3  20742
  Copyright terms: Public domain W3C validator