MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsval2 Structured version   Visualization version   Unicode version

Theorem clsval2 20065
Description: Express closure in terms of interior. (Contributed by NM, 10-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsval2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \ 
( ( int `  J
) `  ( X  \  S ) ) ) )

Proof of Theorem clsval2
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2746 . . . . . 6  |-  { z  e.  ( Clsd `  J
)  |  S  C_  z }  =  {
z  |  ( z  e.  ( Clsd `  J
)  /\  S  C_  z
) }
2 clscld.1 . . . . . . . . . . . . 13  |-  X  = 
U. J
32cldopn 20046 . . . . . . . . . . . 12  |-  ( z  e.  ( Clsd `  J
)  ->  ( X  \  z )  e.  J
)
43ad2antrl 734 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  J
)
5 sscon 3567 . . . . . . . . . . . . 13  |-  ( S 
C_  z  ->  ( X  \  z )  C_  ( X  \  S ) )
65ad2antll 735 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  C_  ( X  \  S ) )
72topopn 19936 . . . . . . . . . . . . . 14  |-  ( J  e.  Top  ->  X  e.  J )
8 difexg 4551 . . . . . . . . . . . . . 14  |-  ( X  e.  J  ->  ( X  \  z )  e. 
_V )
9 elpwg 3959 . . . . . . . . . . . . . 14  |-  ( ( X  \  z )  e.  _V  ->  (
( X  \  z
)  e.  ~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
107, 8, 93syl 18 . . . . . . . . . . . . 13  |-  ( J  e.  Top  ->  (
( X  \  z
)  e.  ~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
1110ad2antrr 732 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( ( X  \  z )  e. 
~P ( X  \  S )  <->  ( X  \  z )  C_  ( X  \  S ) ) )
126, 11mpbird 236 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  ~P ( X  \  S ) )
134, 12elind 3618 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  z )  e.  ( J  i^i  ~P ( X  \  S ) ) )
142cldss 20044 . . . . . . . . . . . . 13  |-  ( z  e.  ( Clsd `  J
)  ->  z  C_  X )
1514ad2antrl 734 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  z  C_  X )
16 dfss4 3677 . . . . . . . . . . . 12  |-  ( z 
C_  X  <->  ( X  \  ( X  \  z
) )  =  z )
1715, 16sylib 200 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  ( X  \  ( X  \  z
) )  =  z )
1817eqcomd 2457 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  z  =  ( X  \  ( X  \  z ) ) )
19 difeq2 3545 . . . . . . . . . . . 12  |-  ( x  =  ( X  \ 
z )  ->  ( X  \  x )  =  ( X  \  ( X  \  z ) ) )
2019eqeq2d 2461 . . . . . . . . . . 11  |-  ( x  =  ( X  \ 
z )  ->  (
z  =  ( X 
\  x )  <->  z  =  ( X  \  ( X  \  z ) ) ) )
2120rspcev 3150 . . . . . . . . . 10  |-  ( ( ( X  \  z
)  e.  ( J  i^i  ~P ( X 
\  S ) )  /\  z  =  ( X  \  ( X 
\  z ) ) )  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) )
2213, 18, 21syl2anc 667 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  ( z  e.  (
Clsd `  J )  /\  S  C_  z ) )  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) )
2322ex 436 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( z  e.  ( Clsd `  J
)  /\  S  C_  z
)  ->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) ) )
24 simpl 459 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  J  e.  Top )
25 elin 3617 . . . . . . . . . . . . 13  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  <->  ( x  e.  J  /\  x  e.  ~P ( X  \  S ) ) )
2625simplbi 462 . . . . . . . . . . . 12  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  ->  x  e.  J )
272opncld 20048 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  x  e.  J )  ->  ( X  \  x
)  e.  ( Clsd `  J ) )
2824, 26, 27syl2an 480 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( X  \  x )  e.  (
Clsd `  J )
)
2925simprbi 466 . . . . . . . . . . . . . 14  |-  ( x  e.  ( J  i^i  ~P ( X  \  S
) )  ->  x  e.  ~P ( X  \  S ) )
3029adantl 468 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  e.  ~P ( X  \  S
) )
3130elpwid 3961 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  C_  ( X  \  S ) )
3231difss2d 3563 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  x  C_  X
)
33 simplr 762 . . . . . . . . . . . . 13  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  S  C_  X
)
34 ssconb 3566 . . . . . . . . . . . . 13  |-  ( ( x  C_  X  /\  S  C_  X )  -> 
( x  C_  ( X  \  S )  <->  S  C_  ( X  \  x ) ) )
3532, 33, 34syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( x  C_  ( X  \  S
)  <->  S  C_  ( X 
\  x ) ) )
3631, 35mpbid 214 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  S  C_  ( X  \  x ) )
3728, 36jca 535 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( ( X  \  x )  e.  ( Clsd `  J
)  /\  S  C_  ( X  \  x ) ) )
38 eleq1 2517 . . . . . . . . . . 11  |-  ( z  =  ( X  \  x )  ->  (
z  e.  ( Clsd `  J )  <->  ( X  \  x )  e.  (
Clsd `  J )
) )
39 sseq2 3454 . . . . . . . . . . 11  |-  ( z  =  ( X  \  x )  ->  ( S  C_  z  <->  S  C_  ( X  \  x ) ) )
4038, 39anbi12d 717 . . . . . . . . . 10  |-  ( z  =  ( X  \  x )  ->  (
( z  e.  (
Clsd `  J )  /\  S  C_  z )  <-> 
( ( X  \  x )  e.  (
Clsd `  J )  /\  S  C_  ( X 
\  x ) ) ) )
4137, 40syl5ibrcom 226 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  x  e.  ( J  i^i  ~P ( X 
\  S ) ) )  ->  ( z  =  ( X  \  x )  ->  (
z  e.  ( Clsd `  J )  /\  S  C_  z ) ) )
4241rexlimdva 2879 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x )  ->  ( z  e.  ( Clsd `  J
)  /\  S  C_  z
) ) )
4323, 42impbid 194 . . . . . . 7  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( z  e.  ( Clsd `  J
)  /\  S  C_  z
)  <->  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X 
\  x ) ) )
4443abbidv 2569 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { z  |  ( z  e.  ( Clsd `  J )  /\  S  C_  z ) }  =  { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
451, 44syl5eq 2497 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { z  e.  (
Clsd `  J )  |  S  C_  z }  =  { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X 
\  x ) } )
4645inteqd 4239 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { z  e.  (
Clsd `  J )  |  S  C_  z }  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
47 difexg 4551 . . . . . . 7  |-  ( X  e.  J  ->  ( X  \  x )  e. 
_V )
4847ralrimivw 2803 . . . . . 6  |-  ( X  e.  J  ->  A. x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  e.  _V )
49 dfiin2g 4311 . . . . . 6  |-  ( A. x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  e.  _V  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
507, 48, 493syl 18 . . . . 5  |-  ( J  e.  Top  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
5150adantr 467 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^|_ x  e.  ( J  i^i  ~P ( X 
\  S ) ) ( X  \  x
)  =  |^| { z  |  E. x  e.  ( J  i^i  ~P ( X  \  S ) ) z  =  ( X  \  x ) } )
5246, 51eqtr4d 2488 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { z  e.  (
Clsd `  J )  |  S  C_  z }  =  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x
) )
532clsval 20052 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { z  e.  ( Clsd `  J
)  |  S  C_  z } )
54 uniiun 4331 . . . . . 6  |-  U. ( J  i^i  ~P ( X 
\  S ) )  =  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x
5554difeq2i 3548 . . . . 5  |-  ( X 
\  U. ( J  i^i  ~P ( X  \  S
) ) )  =  ( X  \  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x )
5655a1i 11 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  U. ( J  i^i  ~P ( X  \  S ) ) )  =  ( X 
\  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
57 0opn 19934 . . . . . . 7  |-  ( J  e.  Top  ->  (/)  e.  J
)
5857adantr 467 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  J )
59 0elpw 4572 . . . . . . 7  |-  (/)  e.  ~P ( X  \  S )
6059a1i 11 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  ~P ( X  \  S ) )
6158, 60elind 3618 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  (/) 
e.  ( J  i^i  ~P ( X  \  S
) ) )
62 ne0i 3737 . . . . 5  |-  ( (/)  e.  ( J  i^i  ~P ( X  \  S ) )  ->  ( J  i^i  ~P ( X  \  S ) )  =/=  (/) )
63 iindif2 4347 . . . . 5  |-  ( ( J  i^i  ~P ( X  \  S ) )  =/=  (/)  ->  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x )  =  ( X  \  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
6461, 62, 633syl 18 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^|_ x  e.  ( J  i^i  ~P ( X 
\  S ) ) ( X  \  x
)  =  ( X 
\  U_ x  e.  ( J  i^i  ~P ( X  \  S ) ) x ) )
6556, 64eqtr4d 2488 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  U. ( J  i^i  ~P ( X  \  S ) ) )  =  |^|_ x  e.  ( J  i^i  ~P ( X  \  S ) ) ( X  \  x ) )
6652, 53, 653eqtr4d 2495 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \  U. ( J  i^i  ~P ( X  \  S ) ) ) )
67 difssd 3561 . . . 4  |-  ( S 
C_  X  ->  ( X  \  S )  C_  X )
682ntrval 20051 . . . 4  |-  ( ( J  e.  Top  /\  ( X  \  S ) 
C_  X )  -> 
( ( int `  J
) `  ( X  \  S ) )  = 
U. ( J  i^i  ~P ( X  \  S
) ) )
6967, 68sylan2 477 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  ( X  \  S ) )  = 
U. ( J  i^i  ~P ( X  \  S
) ) )
7069difeq2d 3551 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( int `  J
) `  ( X  \  S ) ) )  =  ( X  \  U. ( J  i^i  ~P ( X  \  S ) ) ) )
7166, 70eqtr4d 2488 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  ( X  \ 
( ( int `  J
) `  ( X  \  S ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887   {cab 2437    =/= wne 2622   A.wral 2737   E.wrex 2738   {crab 2741   _Vcvv 3045    \ cdif 3401    i^i cin 3403    C_ wss 3404   (/)c0 3731   ~Pcpw 3951   U.cuni 4198   |^|cint 4234   U_ciun 4278   |^|_ciin 4279   ` cfv 5582   Topctop 19917   Clsdccld 20031   intcnt 20032   clsccl 20033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-top 19921  df-cld 20034  df-ntr 20035  df-cls 20036
This theorem is referenced by:  ntrval2  20066  clsdif  20068  cmclsopn  20077  bcth3  22299
  Copyright terms: Public domain W3C validator