MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clssubg Structured version   Unicode version

Theorem clssubg 20480
Description: The closure of a subgroup in a topological group is a subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
clssubg  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (SubGrp `  G ) )

Proof of Theorem clssubg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgntr.h . . . . . . 7  |-  J  =  ( TopOpen `  G )
2 eqid 2443 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
31, 2tgptopon 20454 . . . . . 6  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
43adantr 465 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  J  e.  (TopOn `  ( Base `  G
) ) )
5 topontop 19300 . . . . 5  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
64, 5syl 16 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  J  e.  Top )
72subgss 16076 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
87adantl 466 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  ( Base `  G ) )
9 toponuni 19301 . . . . . 6  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
104, 9syl 16 . . . . 5  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( Base `  G )  =  U. J )
118, 10sseqtrd 3525 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  U. J
)
12 eqid 2443 . . . . 5  |-  U. J  =  U. J
1312clsss3 19433 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
146, 11, 13syl2anc 661 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  C_  U. J
)
1514, 10sseqtr4d 3526 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  C_  ( Base `  G ) )
1612sscls 19430 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  C_  (
( cls `  J
) `  S )
)
176, 11, 16syl2anc 661 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  S  C_  (
( cls `  J
) `  S )
)
18 eqid 2443 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
1918subg0cl 16083 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  S
)
2019adantl 466 . . . 4  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( 0g `  G )  e.  S
)
21 ne0i 3776 . . . 4  |-  ( ( 0g `  G )  e.  S  ->  S  =/=  (/) )
2220, 21syl 16 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  S  =/=  (/) )
23 ssn0 3804 . . 3  |-  ( ( S  C_  ( ( cls `  J ) `  S )  /\  S  =/=  (/) )  ->  (
( cls `  J
) `  S )  =/=  (/) )
2417, 22, 23syl2anc 661 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  =/=  (/) )
25 df-ov 6284 . . . 4  |-  ( x ( -g `  G
) y )  =  ( ( -g `  G
) `  <. x ,  y >. )
26 opelxpi 5021 . . . . . . 7  |-  ( ( x  e.  ( ( cls `  J ) `
 S )  /\  y  e.  ( ( cls `  J ) `  S ) )  ->  <. x ,  y >.  e.  ( ( ( cls `  J ) `  S
)  X.  ( ( cls `  J ) `
 S ) ) )
27 txcls 19978 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  ( Base `  G
) )  /\  J  e.  (TopOn `  ( Base `  G ) ) )  /\  ( S  C_  ( Base `  G )  /\  S  C_  ( Base `  G ) ) )  ->  ( ( cls `  ( J  tX  J
) ) `  ( S  X.  S ) )  =  ( ( ( cls `  J ) `
 S )  X.  ( ( cls `  J
) `  S )
) )
284, 4, 8, 8, 27syl22anc 1230 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  ( J  tX  J ) ) `  ( S  X.  S
) )  =  ( ( ( cls `  J
) `  S )  X.  ( ( cls `  J
) `  S )
) )
29 txtopon 19965 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  ( Base `  G )
)  /\  J  e.  (TopOn `  ( Base `  G
) ) )  -> 
( J  tX  J
)  e.  (TopOn `  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )
304, 4, 29syl2anc 661 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( J  tX  J )  e.  (TopOn `  ( ( Base `  G
)  X.  ( Base `  G ) ) ) )
31 topontop 19300 . . . . . . . . . . . 12  |-  ( ( J  tX  J )  e.  (TopOn `  (
( Base `  G )  X.  ( Base `  G
) ) )  -> 
( J  tX  J
)  e.  Top )
3230, 31syl 16 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( J  tX  J )  e.  Top )
33 cnvimass 5347 . . . . . . . . . . . . 13  |-  ( `' ( -g `  G
) " S ) 
C_  dom  ( -g `  G )
34 tgpgrp 20450 . . . . . . . . . . . . . . . 16  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
3534adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  G  e.  Grp )
36 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( -g `  G )  =  (
-g `  G )
372, 36grpsubf 15991 . . . . . . . . . . . . . . 15  |-  ( G  e.  Grp  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
3835, 37syl 16 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( -g `  G ) : ( ( Base `  G
)  X.  ( Base `  G ) ) --> (
Base `  G )
)
39 fdm 5725 . . . . . . . . . . . . . 14  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) ) )
4038, 39syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  dom  ( -g `  G )  =  ( ( Base `  G
)  X.  ( Base `  G ) ) )
4133, 40syl5sseq 3537 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( `' ( -g `  G )
" S )  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
42 toponuni 19301 . . . . . . . . . . . . 13  |-  ( ( J  tX  J )  e.  (TopOn `  (
( Base `  G )  X.  ( Base `  G
) ) )  -> 
( ( Base `  G
)  X.  ( Base `  G ) )  = 
U. ( J  tX  J ) )
4330, 42syl 16 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( Base `  G )  X.  ( Base `  G
) )  =  U. ( J  tX  J ) )
4441, 43sseqtrd 3525 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( `' ( -g `  G )
" S )  C_  U. ( J  tX  J
) )
4536subgsubcl 16086 . . . . . . . . . . . . . . . 16  |-  ( ( S  e.  (SubGrp `  G )  /\  x  e.  S  /\  y  e.  S )  ->  (
x ( -g `  G
) y )  e.  S )
46453expb 1198 . . . . . . . . . . . . . . 15  |-  ( ( S  e.  (SubGrp `  G )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x
( -g `  G ) y )  e.  S
)
4746ralrimivva 2864 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  A. x  e.  S  A. y  e.  S  ( x
( -g `  G ) y )  e.  S
)
48 fveq2 5856 . . . . . . . . . . . . . . . . 17  |-  ( z  =  <. x ,  y
>.  ->  ( ( -g `  G ) `  z
)  =  ( (
-g `  G ) `  <. x ,  y
>. ) )
4948, 25syl6eqr 2502 . . . . . . . . . . . . . . . 16  |-  ( z  =  <. x ,  y
>.  ->  ( ( -g `  G ) `  z
)  =  ( x ( -g `  G
) y ) )
5049eleq1d 2512 . . . . . . . . . . . . . . 15  |-  ( z  =  <. x ,  y
>.  ->  ( ( (
-g `  G ) `  z )  e.  S  <->  ( x ( -g `  G
) y )  e.  S ) )
5150ralxp 5134 . . . . . . . . . . . . . 14  |-  ( A. z  e.  ( S  X.  S ) ( (
-g `  G ) `  z )  e.  S  <->  A. x  e.  S  A. y  e.  S  (
x ( -g `  G
) y )  e.  S )
5247, 51sylibr 212 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  A. z  e.  ( S  X.  S
) ( ( -g `  G ) `  z
)  e.  S )
5352adantl 466 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  A. z  e.  ( S  X.  S
) ( ( -g `  G ) `  z
)  e.  S )
54 ffun 5723 . . . . . . . . . . . . . 14  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  Fun  ( -g `  G ) )
5538, 54syl 16 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  Fun  ( -g `  G ) )
56 xpss12 5098 . . . . . . . . . . . . . . 15  |-  ( ( S  C_  ( Base `  G )  /\  S  C_  ( Base `  G
) )  ->  ( S  X.  S )  C_  ( ( Base `  G
)  X.  ( Base `  G ) ) )
578, 8, 56syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  S )  C_  (
( Base `  G )  X.  ( Base `  G
) ) )
5857, 40sseqtr4d 3526 . . . . . . . . . . . . 13  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  S )  C_  dom  ( -g `  G ) )
59 funimass5 5989 . . . . . . . . . . . . 13  |-  ( ( Fun  ( -g `  G
)  /\  ( S  X.  S )  C_  dom  ( -g `  G ) )  ->  ( ( S  X.  S )  C_  ( `' ( -g `  G
) " S )  <->  A. z  e.  ( S  X.  S ) ( ( -g `  G
) `  z )  e.  S ) )
6055, 58, 59syl2anc 661 . . . . . . . . . . . 12  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( S  X.  S )  C_  ( `' ( -g `  G
) " S )  <->  A. z  e.  ( S  X.  S ) ( ( -g `  G
) `  z )  e.  S ) )
6153, 60mpbird 232 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( S  X.  S )  C_  ( `' ( -g `  G
) " S ) )
62 eqid 2443 . . . . . . . . . . . 12  |-  U. ( J  tX  J )  = 
U. ( J  tX  J )
6362clsss 19428 . . . . . . . . . . 11  |-  ( ( ( J  tX  J
)  e.  Top  /\  ( `' ( -g `  G
) " S ) 
C_  U. ( J  tX  J )  /\  ( S  X.  S )  C_  ( `' ( -g `  G
) " S ) )  ->  ( ( cls `  ( J  tX  J ) ) `  ( S  X.  S
) )  C_  (
( cls `  ( J  tX  J ) ) `
 ( `' (
-g `  G ) " S ) ) )
6432, 44, 61, 63syl3anc 1229 . . . . . . . . . 10  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  ( J  tX  J ) ) `  ( S  X.  S
) )  C_  (
( cls `  ( J  tX  J ) ) `
 ( `' (
-g `  G ) " S ) ) )
651, 36tgpsubcn 20462 . . . . . . . . . . . 12  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
6665adantr 465 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( -g `  G )  e.  ( ( J  tX  J
)  Cn  J ) )
6712cncls2i 19644 . . . . . . . . . . 11  |-  ( ( ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J )  /\  S  C_  U. J )  ->  ( ( cls `  ( J  tX  J
) ) `  ( `' ( -g `  G
) " S ) )  C_  ( `' ( -g `  G )
" ( ( cls `  J ) `  S
) ) )
6866, 11, 67syl2anc 661 . . . . . . . . . 10  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  ( J  tX  J ) ) `  ( `' ( -g `  G
) " S ) )  C_  ( `' ( -g `  G )
" ( ( cls `  J ) `  S
) ) )
6964, 68sstrd 3499 . . . . . . . . 9  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  ( J  tX  J ) ) `  ( S  X.  S
) )  C_  ( `' ( -g `  G
) " ( ( cls `  J ) `
 S ) ) )
7028, 69eqsstr3d 3524 . . . . . . . 8  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( (
( cls `  J
) `  S )  X.  ( ( cls `  J
) `  S )
)  C_  ( `' ( -g `  G )
" ( ( cls `  J ) `  S
) ) )
7170sselda 3489 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  <.
x ,  y >.  e.  ( ( ( cls `  J ) `  S
)  X.  ( ( cls `  J ) `
 S ) ) )  ->  <. x ,  y >.  e.  ( `' ( -g `  G
) " ( ( cls `  J ) `
 S ) ) )
7226, 71sylan2 474 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  (
( cls `  J
) `  S )  /\  y  e.  (
( cls `  J
) `  S )
) )  ->  <. x ,  y >.  e.  ( `' ( -g `  G
) " ( ( cls `  J ) `
 S ) ) )
7334ad2antrr 725 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  (
( cls `  J
) `  S )  /\  y  e.  (
( cls `  J
) `  S )
) )  ->  G  e.  Grp )
74 ffn 5721 . . . . . . 7  |-  ( (
-g `  G ) : ( ( Base `  G )  X.  ( Base `  G ) ) --> ( Base `  G
)  ->  ( -g `  G )  Fn  (
( Base `  G )  X.  ( Base `  G
) ) )
75 elpreima 5992 . . . . . . 7  |-  ( (
-g `  G )  Fn  ( ( Base `  G
)  X.  ( Base `  G ) )  -> 
( <. x ,  y
>.  e.  ( `' (
-g `  G ) " ( ( cls `  J ) `  S
) )  <->  ( <. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  ( ( cls `  J
) `  S )
) ) )
7673, 37, 74, 754syl 21 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  (
( cls `  J
) `  S )  /\  y  e.  (
( cls `  J
) `  S )
) )  ->  ( <. x ,  y >.  e.  ( `' ( -g `  G ) " (
( cls `  J
) `  S )
)  <->  ( <. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  ( ( cls `  J
) `  S )
) ) )
7772, 76mpbid 210 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  (
( cls `  J
) `  S )  /\  y  e.  (
( cls `  J
) `  S )
) )  ->  ( <. x ,  y >.  e.  ( ( Base `  G
)  X.  ( Base `  G ) )  /\  ( ( -g `  G
) `  <. x ,  y >. )  e.  ( ( cls `  J
) `  S )
) )
7877simprd 463 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  (
( cls `  J
) `  S )  /\  y  e.  (
( cls `  J
) `  S )
) )  ->  (
( -g `  G ) `
 <. x ,  y
>. )  e.  (
( cls `  J
) `  S )
)
7925, 78syl5eqel 2535 . . 3  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G ) )  /\  ( x  e.  (
( cls `  J
) `  S )  /\  y  e.  (
( cls `  J
) `  S )
) )  ->  (
x ( -g `  G
) y )  e.  ( ( cls `  J
) `  S )
)
8079ralrimivva 2864 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  A. x  e.  ( ( cls `  J
) `  S ) A. y  e.  (
( cls `  J
) `  S )
( x ( -g `  G ) y )  e.  ( ( cls `  J ) `  S
) )
812, 36issubg4 16094 . . 3  |-  ( G  e.  Grp  ->  (
( ( cls `  J
) `  S )  e.  (SubGrp `  G )  <->  ( ( ( cls `  J
) `  S )  C_  ( Base `  G
)  /\  ( ( cls `  J ) `  S )  =/=  (/)  /\  A. x  e.  ( ( cls `  J ) `  S ) A. y  e.  ( ( cls `  J
) `  S )
( x ( -g `  G ) y )  e.  ( ( cls `  J ) `  S
) ) ) )
8235, 81syl 16 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( (
( cls `  J
) `  S )  e.  (SubGrp `  G )  <->  ( ( ( cls `  J
) `  S )  C_  ( Base `  G
)  /\  ( ( cls `  J ) `  S )  =/=  (/)  /\  A. x  e.  ( ( cls `  J ) `  S ) A. y  e.  ( ( cls `  J
) `  S )
( x ( -g `  G ) y )  e.  ( ( cls `  J ) `  S
) ) ) )
8315, 24, 80, 82mpbir3and 1180 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (SubGrp `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793    C_ wss 3461   (/)c0 3770   <.cop 4020   U.cuni 4234    X. cxp 4987   `'ccnv 4988   dom cdm 4989   "cima 4992   Fun wfun 5572    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281   Basecbs 14509   TopOpenctopn 14696   0gc0g 14714   Grpcgrp 15927   -gcsg 15929  SubGrpcsubg 16069   Topctop 19267  TopOnctopon 19268   clsccl 19392    Cn ccn 19598    tX ctx 19934   TopGrpctgp 20443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-er 7313  df-map 7424  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-0g 14716  df-topgen 14718  df-plusf 15745  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932  df-sbg 15933  df-subg 16072  df-top 19272  df-bases 19274  df-topon 19275  df-topsp 19276  df-cld 19393  df-ntr 19394  df-cls 19395  df-cn 19601  df-tx 19936  df-tmd 20444  df-tgp 20445
This theorem is referenced by:  clsnsg  20481  tgptsmscls  20525
  Copyright terms: Public domain W3C validator