MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss2 Structured version   Unicode version

Theorem clsss2 19550
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsss2  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  C )

Proof of Theorem clsss2
StepHypRef Expression
1 cldrcl 19504 . . . 4  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  Top )
21adantr 465 . . 3  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  J  e.  Top )
3 clscld.1 . . . . 5  |-  X  = 
U. J
43cldss 19507 . . . 4  |-  ( C  e.  ( Clsd `  J
)  ->  C  C_  X
)
54adantr 465 . . 3  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  C  C_  X )
6 simpr 461 . . 3  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  S  C_  C )
73clsss 19532 . . 3  |-  ( ( J  e.  Top  /\  C  C_  X  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  ( ( cls `  J
) `  C )
)
82, 5, 6, 7syl3anc 1229 . 2  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  ( ( cls `  J
) `  C )
)
9 cldcls 19520 . . 3  |-  ( C  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  C )  =  C )
109adantr 465 . 2  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  C )  =  C )
118, 10sseqtrd 3525 1  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1383    e. wcel 1804    C_ wss 3461   U.cuni 4234   ` cfv 5578   Topctop 19371   Clsdccld 19494   clsccl 19496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-top 19376  df-cld 19497  df-cls 19499
This theorem is referenced by:  elcls  19551  restcls  19659  cncls2i  19748  isnrm3  19837  lpcls  19842  isreg2  19855  dnsconst  19856  hauscmplem  19883  txcls  20082  ptclsg  20093  kqreglem1  20219  kqreglem2  20220  kqnrmlem1  20221  kqnrmlem2  20222  blcls  20986  clsocv  21667  resscdrg  21775  cldregopn  30124
  Copyright terms: Public domain W3C validator