MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss2 Structured version   Unicode version

Theorem clsss2 18676
Description: If a subset is included in a closed set, so is the subset's closure. (Contributed by NM, 22-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsss2  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  C )

Proof of Theorem clsss2
StepHypRef Expression
1 cldrcl 18630 . . . 4  |-  ( C  e.  ( Clsd `  J
)  ->  J  e.  Top )
21adantr 465 . . 3  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  J  e.  Top )
3 clscld.1 . . . . 5  |-  X  = 
U. J
43cldss 18633 . . . 4  |-  ( C  e.  ( Clsd `  J
)  ->  C  C_  X
)
54adantr 465 . . 3  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  C  C_  X )
6 simpr 461 . . 3  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  S  C_  C )
73clsss 18658 . . 3  |-  ( ( J  e.  Top  /\  C  C_  X  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  ( ( cls `  J
) `  C )
)
82, 5, 6, 7syl3anc 1218 . 2  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  ( ( cls `  J
) `  C )
)
9 cldcls 18646 . . 3  |-  ( C  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  C )  =  C )
109adantr 465 . 2  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  C )  =  C )
118, 10sseqtrd 3392 1  |-  ( ( C  e.  ( Clsd `  J )  /\  S  C_  C )  ->  (
( cls `  J
) `  S )  C_  C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    C_ wss 3328   U.cuni 4091   ` cfv 5418   Topctop 18498   Clsdccld 18620   clsccl 18622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-top 18503  df-cld 18623  df-cls 18625
This theorem is referenced by:  elcls  18677  restcls  18785  cncls2i  18874  isnrm3  18963  lpcls  18968  isreg2  18981  dnsconst  18982  hauscmplem  19009  txcls  19177  ptclsg  19188  kqreglem1  19314  kqreglem2  19315  kqnrmlem1  19316  kqnrmlem2  19317  blcls  20081  clsocv  20762  resscdrg  20870  cldregopn  28526
  Copyright terms: Public domain W3C validator