MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsss Structured version   Unicode version

Theorem clsss 20006
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clsss  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  C_  ( ( cls `  J
) `  S )
)

Proof of Theorem clsss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3409 . . . . . 6  |-  ( T 
C_  S  ->  ( S  C_  x  ->  T  C_  x ) )
21adantr 466 . . . . 5  |-  ( ( T  C_  S  /\  x  e.  ( Clsd `  J ) )  -> 
( S  C_  x  ->  T  C_  x )
)
32ss2rabdv 3480 . . . 4  |-  ( T 
C_  S  ->  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  { x  e.  ( Clsd `  J
)  |  T  C_  x } )
4 intss 4214 . . . 4  |-  ( { x  e.  ( Clsd `  J )  |  S  C_  x }  C_  { x  e.  ( Clsd `  J
)  |  T  C_  x }  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
53, 4syl 17 . . 3  |-  ( T 
C_  S  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
653ad2ant3 1028 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x }  C_  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
7 simp1 1005 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  J  e.  Top )
8 sstr2 3409 . . . . 5  |-  ( T 
C_  S  ->  ( S  C_  X  ->  T  C_  X ) )
98impcom 431 . . . 4  |-  ( ( S  C_  X  /\  T  C_  S )  ->  T  C_  X )
1093adant1 1023 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  T  C_  X )
11 clscld.1 . . . 4  |-  X  = 
U. J
1211clsval 19989 . . 3  |-  ( ( J  e.  Top  /\  T  C_  X )  -> 
( ( cls `  J
) `  T )  =  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x } )
137, 10, 12syl2anc 665 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  =  |^| { x  e.  ( Clsd `  J
)  |  T  C_  x } )
1411clsval 19989 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
15143adant3 1025 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
166, 13, 153sstr4d 3445 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  T  C_  S )  ->  (
( cls `  J
) `  T )  C_  ( ( cls `  J
) `  S )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 982    = wceq 1437    e. wcel 1872   {crab 2713    C_ wss 3374   U.cuni 4157   |^|cint 4193   ` cfv 5539   Topctop 19854   Clsdccld 19968   clsccl 19970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-rep 4474  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 3019  df-sbc 3238  df-csb 3334  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-op 3943  df-uni 4158  df-int 4194  df-iun 4239  df-br 4362  df-opab 4421  df-mpt 4422  df-id 4706  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-top 19858  df-cld 19971  df-cls 19973
This theorem is referenced by:  ntrss  20007  clsss2  20025  lpsscls  20094  lpss3  20097  cnclsi  20225  cncls  20227  lpcls  20317  cnextcn  21019  clssubg  21060  clsnsg  21061  utopreg  21204  hauseqcn  28648  kur14lem6  29881  clsint2  30929  opnregcld  30930
  Copyright terms: Public domain W3C validator