MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Unicode version

Theorem clsocv 20737
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v  |-  V  =  ( Base `  W
)
clsocv.o  |-  O  =  ( ocv `  W
)
clsocv.j  |-  J  =  ( TopOpen `  W )
Assertion
Ref Expression
clsocv  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  =  ( O `  S
) )

Proof of Theorem clsocv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 20667 . . . . . . . 8  |-  ( W  e.  CPreHil  ->  W  e. NrmGrp )
2 ngptps 20169 . . . . . . . 8  |-  ( W  e. NrmGrp  ->  W  e.  TopSp )
31, 2syl 16 . . . . . . 7  |-  ( W  e.  CPreHil  ->  W  e.  TopSp )
43adantr 465 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  W  e.  TopSp )
5 clsocv.v . . . . . . 7  |-  V  =  ( Base `  W
)
6 clsocv.j . . . . . . 7  |-  J  =  ( TopOpen `  W )
75, 6istps 18516 . . . . . 6  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  V ) )
84, 7sylib 196 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  J  e.  (TopOn `  V )
)
9 topontop 18506 . . . . 5  |-  ( J  e.  (TopOn `  V
)  ->  J  e.  Top )
108, 9syl 16 . . . 4  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  J  e.  Top )
11 simpr 461 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_  V )
12 toponuni 18507 . . . . . 6  |-  ( J  e.  (TopOn `  V
)  ->  V  =  U. J )
138, 12syl 16 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  V  =  U. J )
1411, 13sseqtrd 3387 . . . 4  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_ 
U. J )
15 eqid 2438 . . . . 5  |-  U. J  =  U. J
1615sscls 18635 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  C_  (
( cls `  J
) `  S )
)
1710, 14, 16syl2anc 661 . . 3  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_  ( ( cls `  J
) `  S )
)
18 clsocv.o . . . 4  |-  O  =  ( ocv `  W
)
1918ocv2ss 18073 . . 3  |-  ( S 
C_  ( ( cls `  J ) `  S
)  ->  ( O `  ( ( cls `  J
) `  S )
)  C_  ( O `  S ) )
2017, 19syl 16 . 2  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  C_  ( O `  S ) )
2115clsss3 18638 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
2210, 14, 21syl2anc 661 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
2322, 13sseqtr4d 3388 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  C_  V )
2423adantr 465 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  C_  V )
255, 18ocvss 18070 . . . . . . 7  |-  ( O `
 S )  C_  V
2625a1i 11 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  S )  C_  V )
2726sselda 3351 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  x  e.  V )
28 df-ss 3337 . . . . . . . . . . . 12  |-  ( ( ( cls `  J
) `  S )  C_  V  <->  ( ( ( cls `  J ) `
 S )  i^i 
V )  =  ( ( cls `  J
) `  S )
)
2924, 28sylib 196 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  V )  =  ( ( cls `  J ) `  S
) )
3029ineq1d 3546 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  { y  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
31 dfrab3 3620 . . . . . . . . . . . 12  |-  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  =  ( V  i^i  { y  |  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) } )
3231ineq2i 3544 . . . . . . . . . . 11  |-  ( ( ( cls `  J
) `  S )  i^i  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  ( V  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
33 inass 3555 . . . . . . . . . . 11  |-  ( ( ( ( cls `  J
) `  S )  i^i  V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  ( V  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
3432, 33eqtr4i 2461 . . . . . . . . . 10  |-  ( ( ( cls `  J
) `  S )  i^i  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( ( cls `  J
) `  S )  i^i  V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )
35 dfrab3 3620 . . . . . . . . . 10  |-  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) }  =  ( ( ( cls `  J ) `
 S )  i^i 
{ y  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
3630, 34, 353eqtr4g 2495 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  {
y  e.  ( ( cls `  J ) `
 S )  |  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) } )
3715clscld 18626 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  e.  ( Clsd `  J ) )
3810, 14, 37syl2anc 661 . . . . . . . . . . 11  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
3938adantr 465 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
40 fvex 5696 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  W )
)  e.  _V
41 eqid 2438 . . . . . . . . . . . . 13  |-  ( y  e.  V  |->  ( x ( .i `  W
) y ) )  =  ( y  e.  V  |->  ( x ( .i `  W ) y ) )
4241mptiniseg 5327 . . . . . . . . . . . 12  |-  ( ( 0g `  (Scalar `  W ) )  e. 
_V  ->  ( `' ( y  e.  V  |->  ( x ( .i `  W ) y ) ) " { ( 0g `  (Scalar `  W ) ) } )  =  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
4340, 42ax-mp 5 . . . . . . . . . . 11  |-  ( `' ( y  e.  V  |->  ( x ( .i
`  W ) y ) ) " {
( 0g `  (Scalar `  W ) ) } )  =  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }
44 eqid 2438 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
45 eqid 2438 . . . . . . . . . . . . 13  |-  ( .i
`  W )  =  ( .i `  W
)
46 simpll 753 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  W  e.  CPreHil )
478adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  J  e.  (TopOn `  V
) )
4847, 47, 27cnmptc 19210 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  x )  e.  ( J  Cn  J ) )
4947cnmptid 19209 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  y )  e.  ( J  Cn  J ) )
506, 44, 45, 46, 47, 48, 49cnmpt1ip 20734 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  ( x ( .i
`  W ) y ) )  e.  ( J  Cn  ( TopOpen ` fld )
) )
5144cnfldhaus 20339 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  Haus
52 cphclm 20683 . . . . . . . . . . . . . . . 16  |-  ( W  e.  CPreHil  ->  W  e. CMod )
53 eqid 2438 . . . . . . . . . . . . . . . . 17  |-  (Scalar `  W )  =  (Scalar `  W )
5453clm0 20619 . . . . . . . . . . . . . . . 16  |-  ( W  e. CMod  ->  0  =  ( 0g `  (Scalar `  W ) ) )
5552, 54syl 16 . . . . . . . . . . . . . . 15  |-  ( W  e.  CPreHil  ->  0  =  ( 0g `  (Scalar `  W ) ) )
5655ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
0  =  ( 0g
`  (Scalar `  W )
) )
57 0cn 9370 . . . . . . . . . . . . . 14  |-  0  e.  CC
5856, 57syl6eqelr 2527 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( 0g `  (Scalar `  W ) )  e.  CC )
5944cnfldtopon 20337 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
6059toponunii 18512 . . . . . . . . . . . . . 14  |-  CC  =  U. ( TopOpen ` fld )
6160sncld 18950 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  ( 0g `  (Scalar `  W ) )  e.  CC )  ->  { ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
6251, 58, 61sylancr 663 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  ( TopOpen ` fld ) ) )
63 cnclima 18847 . . . . . . . . . . . 12  |-  ( ( ( y  e.  V  |->  ( x ( .i
`  W ) y ) )  e.  ( J  Cn  ( TopOpen ` fld )
)  /\  { ( 0g `  (Scalar `  W
) ) }  e.  ( Clsd `  ( TopOpen ` fld ) ) )  -> 
( `' ( y  e.  V  |->  ( x ( .i `  W
) y ) )
" { ( 0g
`  (Scalar `  W )
) } )  e.  ( Clsd `  J
) )
6450, 62, 63syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( `' ( y  e.  V  |->  ( x ( .i `  W
) y ) )
" { ( 0g
`  (Scalar `  W )
) } )  e.  ( Clsd `  J
) )
6543, 64syl5eqelr 2523 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
) )
66 incld 18622 . . . . . . . . . 10  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  e.  (
Clsd `  J )
)
6739, 65, 66syl2anc 661 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  e.  (
Clsd `  J )
)
6836, 67eqeltrrd 2513 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
) )
6917adantr 465 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  S  C_  ( ( cls `  J ) `  S
) )
70 eqid 2438 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
715, 45, 53, 70, 18ocvi 18069 . . . . . . . . . . 11  |-  ( ( x  e.  ( O `
 S )  /\  y  e.  S )  ->  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
7271ralrimiva 2794 . . . . . . . . . 10  |-  ( x  e.  ( O `  S )  ->  A. y  e.  S  ( x
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )
7372adantl 466 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  A. y  e.  S  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
74 ssrab 3425 . . . . . . . . 9  |-  ( S 
C_  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  <-> 
( S  C_  (
( cls `  J
) `  S )  /\  A. y  e.  S  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
7569, 73, 74sylanbrc 664 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  S  C_  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
7615clsss2 18651 . . . . . . . 8  |-  ( ( { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
)  /\  S  C_  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  ->  ( ( cls `  J ) `  S )  C_  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )
7768, 75, 76syl2anc 661 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  C_ 
{ y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
78 ssrab2 3432 . . . . . . . 8  |-  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( ( cls `  J ) `  S
)
7978a1i 11 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( ( cls `  J ) `  S
) )
8077, 79eqssd 3368 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  =  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
81 rabid2 2893 . . . . . 6  |-  ( ( ( cls `  J
) `  S )  =  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  <->  A. y  e.  (
( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
8280, 81sylib 196 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  A. y  e.  (
( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
835, 45, 53, 70, 18elocv 18068 . . . . 5  |-  ( x  e.  ( O `  ( ( cls `  J
) `  S )
)  <->  ( ( ( cls `  J ) `
 S )  C_  V  /\  x  e.  V  /\  A. y  e.  ( ( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
8424, 27, 82, 83syl3anbrc 1172 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  x  e.  ( O `  ( ( cls `  J
) `  S )
) )
8584ex 434 . . 3  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
x  e.  ( O `
 S )  ->  x  e.  ( O `  ( ( cls `  J
) `  S )
) ) )
8685ssrdv 3357 . 2  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  S )  C_  ( O `  (
( cls `  J
) `  S )
) )
8720, 86eqssd 3368 1  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  =  ( O `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2424   A.wral 2710   {crab 2714   _Vcvv 2967    i^i cin 3322    C_ wss 3323   {csn 3872   U.cuni 4086    e. cmpt 4345   `'ccnv 4834   "cima 4838   ` cfv 5413  (class class class)co 6086   CCcc 9272   0cc0 9274   Basecbs 14166  Scalarcsca 14233   .icip 14235   TopOpenctopn 14352   0gc0g 14370  ℂfldccnfld 17793   ocvcocv 18060   Topctop 18473  TopOnctopon 18474   TopSpctps 18476   Clsdccld 18595   clsccl 18597    Cn ccn 18803   Hauscha 18887  NrmGrpcngp 20145  CModcclm 20609   CPreHilccph 20660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-inf2 7839  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352  ax-addf 9353  ax-mulf 9354
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-iin 4169  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-se 4675  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-isom 5422  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-of 6315  df-om 6472  df-1st 6572  df-2nd 6573  df-supp 6686  df-tpos 6740  df-recs 6824  df-rdg 6858  df-1o 6912  df-2o 6913  df-oadd 6916  df-er 7093  df-map 7208  df-ixp 7256  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-fsupp 7613  df-fi 7653  df-sup 7683  df-oi 7716  df-card 8101  df-cda 8329  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-10 10380  df-n0 10572  df-z 10639  df-dec 10748  df-uz 10854  df-q 10946  df-rp 10984  df-xneg 11081  df-xadd 11082  df-xmul 11083  df-ico 11298  df-icc 11299  df-fz 11430  df-fzo 11541  df-seq 11799  df-exp 11858  df-hash 12096  df-cj 12580  df-re 12581  df-im 12582  df-sqr 12716  df-abs 12717  df-struct 14168  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-ress 14173  df-plusg 14243  df-mulr 14244  df-starv 14245  df-sca 14246  df-vsca 14247  df-ip 14248  df-tset 14249  df-ple 14250  df-ds 14252  df-unif 14253  df-hom 14254  df-cco 14255  df-rest 14353  df-topn 14354  df-0g 14372  df-gsum 14373  df-topgen 14374  df-pt 14375  df-prds 14378  df-xrs 14432  df-qtop 14437  df-imas 14438  df-xps 14440  df-mre 14516  df-mrc 14517  df-acs 14519  df-mnd 15407  df-mhm 15456  df-submnd 15457  df-grp 15536  df-minusg 15537  df-sbg 15538  df-mulg 15539  df-subg 15669  df-ghm 15736  df-cntz 15826  df-cmn 16270  df-abl 16271  df-mgp 16580  df-ur 16592  df-rng 16635  df-cring 16636  df-oppr 16703  df-dvdsr 16721  df-unit 16722  df-invr 16752  df-dvr 16763  df-rnghom 16794  df-drng 16812  df-subrg 16841  df-staf 16908  df-srng 16909  df-lmod 16928  df-lmhm 17080  df-lvec 17161  df-sra 17230  df-rgmod 17231  df-psmet 17784  df-xmet 17785  df-met 17786  df-bl 17787  df-mopn 17788  df-cnfld 17794  df-phl 18030  df-ipf 18031  df-ocv 18063  df-top 18478  df-bases 18480  df-topon 18481  df-topsp 18482  df-cld 18598  df-cls 18600  df-cn 18806  df-cnp 18807  df-t1 18893  df-haus 18894  df-tx 19110  df-hmeo 19303  df-xms 19870  df-ms 19871  df-tms 19872  df-nm 20150  df-ngp 20151  df-tng 20152  df-nlm 20154  df-clm 20610  df-cph 20662  df-tch 20663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator