MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsocv Structured version   Visualization version   Unicode version

Theorem clsocv 22214
Description: The orthogonal complement of the closure of a subset is the same as the orthogonal complement of the subset itself. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypotheses
Ref Expression
clsocv.v  |-  V  =  ( Base `  W
)
clsocv.o  |-  O  =  ( ocv `  W
)
clsocv.j  |-  J  =  ( TopOpen `  W )
Assertion
Ref Expression
clsocv  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  =  ( O `  S
) )

Proof of Theorem clsocv
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cphngp 22144 . . . . . . . 8  |-  ( W  e.  CPreHil  ->  W  e. NrmGrp )
2 ngptps 21609 . . . . . . . 8  |-  ( W  e. NrmGrp  ->  W  e.  TopSp )
31, 2syl 17 . . . . . . 7  |-  ( W  e.  CPreHil  ->  W  e.  TopSp )
43adantr 467 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  W  e.  TopSp )
5 clsocv.v . . . . . . 7  |-  V  =  ( Base `  W
)
6 clsocv.j . . . . . . 7  |-  J  =  ( TopOpen `  W )
75, 6istps 19944 . . . . . 6  |-  ( W  e.  TopSp 
<->  J  e.  (TopOn `  V ) )
84, 7sylib 200 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  J  e.  (TopOn `  V )
)
9 topontop 19934 . . . . 5  |-  ( J  e.  (TopOn `  V
)  ->  J  e.  Top )
108, 9syl 17 . . . 4  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  J  e.  Top )
11 simpr 463 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_  V )
12 toponuni 19935 . . . . . 6  |-  ( J  e.  (TopOn `  V
)  ->  V  =  U. J )
138, 12syl 17 . . . . 5  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  V  =  U. J )
1411, 13sseqtrd 3467 . . . 4  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_ 
U. J )
15 eqid 2450 . . . . 5  |-  U. J  =  U. J
1615sscls 20064 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  S  C_  (
( cls `  J
) `  S )
)
1710, 14, 16syl2anc 666 . . 3  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  S  C_  ( ( cls `  J
) `  S )
)
18 clsocv.o . . . 4  |-  O  =  ( ocv `  W
)
1918ocv2ss 19229 . . 3  |-  ( S 
C_  ( ( cls `  J ) `  S
)  ->  ( O `  ( ( cls `  J
) `  S )
)  C_  ( O `  S ) )
2017, 19syl 17 . 2  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  C_  ( O `  S ) )
2115clsss3 20067 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
2210, 14, 21syl2anc 666 . . . . . . 7  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
2322, 13sseqtr4d 3468 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  C_  V )
2423adantr 467 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  C_  V )
255, 18ocvss 19226 . . . . . . 7  |-  ( O `
 S )  C_  V
2625a1i 11 . . . . . 6  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  S )  C_  V )
2726sselda 3431 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  x  e.  V )
28 df-ss 3417 . . . . . . . . . . . 12  |-  ( ( ( cls `  J
) `  S )  C_  V  <->  ( ( ( cls `  J ) `
 S )  i^i 
V )  =  ( ( cls `  J
) `  S )
)
2924, 28sylib 200 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  V )  =  ( ( cls `  J ) `  S
) )
3029ineq1d 3632 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( ( cls `  J ) `
 S )  i^i 
V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  { y  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
31 dfrab3 3717 . . . . . . . . . . . 12  |-  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  =  ( V  i^i  { y  |  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) } )
3231ineq2i 3630 . . . . . . . . . . 11  |-  ( ( ( cls `  J
) `  S )  i^i  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  ( V  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
33 inass 3641 . . . . . . . . . . 11  |-  ( ( ( ( cls `  J
) `  S )  i^i  V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( cls `  J
) `  S )  i^i  ( V  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } ) )
3432, 33eqtr4i 2475 . . . . . . . . . 10  |-  ( ( ( cls `  J
) `  S )  i^i  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  ( ( ( ( cls `  J
) `  S )  i^i  V )  i^i  {
y  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )
35 dfrab3 3717 . . . . . . . . . 10  |-  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) }  =  ( ( ( cls `  J ) `
 S )  i^i 
{ y  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
3630, 34, 353eqtr4g 2509 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  =  {
y  e.  ( ( cls `  J ) `
 S )  |  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) } )
3715clscld 20055 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  e.  ( Clsd `  J ) )
3810, 14, 37syl2anc 666 . . . . . . . . . . 11  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
( cls `  J
) `  S )  e.  ( Clsd `  J
) )
3938adantr 467 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
40 fvex 5873 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  W )
)  e.  _V
41 eqid 2450 . . . . . . . . . . . . 13  |-  ( y  e.  V  |->  ( x ( .i `  W
) y ) )  =  ( y  e.  V  |->  ( x ( .i `  W ) y ) )
4241mptiniseg 5328 . . . . . . . . . . . 12  |-  ( ( 0g `  (Scalar `  W ) )  e. 
_V  ->  ( `' ( y  e.  V  |->  ( x ( .i `  W ) y ) ) " { ( 0g `  (Scalar `  W ) ) } )  =  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
4340, 42ax-mp 5 . . . . . . . . . . 11  |-  ( `' ( y  e.  V  |->  ( x ( .i
`  W ) y ) ) " {
( 0g `  (Scalar `  W ) ) } )  =  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }
44 eqid 2450 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
45 eqid 2450 . . . . . . . . . . . . 13  |-  ( .i
`  W )  =  ( .i `  W
)
46 simpll 759 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  W  e.  CPreHil )
478adantr 467 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  J  e.  (TopOn `  V
) )
4847, 47, 27cnmptc 20670 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  x )  e.  ( J  Cn  J ) )
4947cnmptid 20669 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  y )  e.  ( J  Cn  J ) )
506, 44, 45, 46, 47, 48, 49cnmpt1ip 22211 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( y  e.  V  |->  ( x ( .i
`  W ) y ) )  e.  ( J  Cn  ( TopOpen ` fld )
) )
5144cnfldhaus 21798 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  Haus
52 cphclm 22160 . . . . . . . . . . . . . . . 16  |-  ( W  e.  CPreHil  ->  W  e. CMod )
53 eqid 2450 . . . . . . . . . . . . . . . . 17  |-  (Scalar `  W )  =  (Scalar `  W )
5453clm0 22096 . . . . . . . . . . . . . . . 16  |-  ( W  e. CMod  ->  0  =  ( 0g `  (Scalar `  W ) ) )
5552, 54syl 17 . . . . . . . . . . . . . . 15  |-  ( W  e.  CPreHil  ->  0  =  ( 0g `  (Scalar `  W ) ) )
5655ad2antrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
0  =  ( 0g
`  (Scalar `  W )
) )
57 0cn 9632 . . . . . . . . . . . . . 14  |-  0  e.  CC
5856, 57syl6eqelr 2537 . . . . . . . . . . . . 13  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( 0g `  (Scalar `  W ) )  e.  CC )
5944cnfldtopon 21796 . . . . . . . . . . . . . . 15  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
6059toponunii 19940 . . . . . . . . . . . . . 14  |-  CC  =  U. ( TopOpen ` fld )
6160sncld 20380 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  Haus  /\  ( 0g `  (Scalar `  W ) )  e.  CC )  ->  { ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  ( TopOpen
` fld
) ) )
6251, 58, 61sylancr 668 . . . . . . . . . . . 12  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  ( TopOpen ` fld ) ) )
63 cnclima 20277 . . . . . . . . . . . 12  |-  ( ( ( y  e.  V  |->  ( x ( .i
`  W ) y ) )  e.  ( J  Cn  ( TopOpen ` fld )
)  /\  { ( 0g `  (Scalar `  W
) ) }  e.  ( Clsd `  ( TopOpen ` fld ) ) )  -> 
( `' ( y  e.  V  |->  ( x ( .i `  W
) y ) )
" { ( 0g
`  (Scalar `  W )
) } )  e.  ( Clsd `  J
) )
6450, 62, 63syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( `' ( y  e.  V  |->  ( x ( .i `  W
) y ) )
" { ( 0g
`  (Scalar `  W )
) } )  e.  ( Clsd `  J
) )
6543, 64syl5eqelr 2533 . . . . . . . . . 10  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  V  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
) )
66 incld 20051 . . . . . . . . . 10  |-  ( ( ( ( cls `  J
) `  S )  e.  ( Clsd `  J
)  /\  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  e.  (
Clsd `  J )
)
6739, 65, 66syl2anc 666 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( ( cls `  J ) `  S
)  i^i  { y  e.  V  |  (
x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )  e.  (
Clsd `  J )
)
6836, 67eqeltrrd 2529 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
) )
6917adantr 467 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  S  C_  ( ( cls `  J ) `  S
) )
70 eqid 2450 . . . . . . . . . . . 12  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
715, 45, 53, 70, 18ocvi 19225 . . . . . . . . . . 11  |-  ( ( x  e.  ( O `
 S )  /\  y  e.  S )  ->  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
7271ralrimiva 2801 . . . . . . . . . 10  |-  ( x  e.  ( O `  S )  ->  A. y  e.  S  ( x
( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) )
7372adantl 468 . . . . . . . . 9  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  A. y  e.  S  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
74 ssrab 3506 . . . . . . . . 9  |-  ( S 
C_  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  <-> 
( S  C_  (
( cls `  J
) `  S )  /\  A. y  e.  S  ( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
7569, 73, 74sylanbrc 669 . . . . . . . 8  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  S  C_  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
7615clsss2 20081 . . . . . . . 8  |-  ( ( { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  e.  ( Clsd `  J
)  /\  S  C_  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )  ->  ( ( cls `  J ) `  S )  C_  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } )
7768, 75, 76syl2anc 666 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  C_ 
{ y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
78 ssrab2 3513 . . . . . . . 8  |-  { y  e.  ( ( cls `  J ) `  S
)  |  ( x ( .i `  W
) y )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( ( cls `  J ) `  S
)
7978a1i 11 . . . . . . 7  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } 
C_  ( ( cls `  J ) `  S
) )
8077, 79eqssd 3448 . . . . . 6  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  -> 
( ( cls `  J
) `  S )  =  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) } )
81 rabid2 2967 . . . . . 6  |-  ( ( ( cls `  J
) `  S )  =  { y  e.  ( ( cls `  J
) `  S )  |  ( x ( .i `  W ) y )  =  ( 0g `  (Scalar `  W ) ) }  <->  A. y  e.  (
( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
8280, 81sylib 200 . . . . 5  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  A. y  e.  (
( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) )
835, 45, 53, 70, 18elocv 19224 . . . . 5  |-  ( x  e.  ( O `  ( ( cls `  J
) `  S )
)  <->  ( ( ( cls `  J ) `
 S )  C_  V  /\  x  e.  V  /\  A. y  e.  ( ( cls `  J
) `  S )
( x ( .i
`  W ) y )  =  ( 0g
`  (Scalar `  W )
) ) )
8424, 27, 82, 83syl3anbrc 1191 . . . 4  |-  ( ( ( W  e.  CPreHil  /\  S  C_  V )  /\  x  e.  ( O `  S ) )  ->  x  e.  ( O `  ( ( cls `  J
) `  S )
) )
8584ex 436 . . 3  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  (
x  e.  ( O `
 S )  ->  x  e.  ( O `  ( ( cls `  J
) `  S )
) ) )
8685ssrdv 3437 . 2  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  S )  C_  ( O `  (
( cls `  J
) `  S )
) )
8720, 86eqssd 3448 1  |-  ( ( W  e.  CPreHil  /\  S  C_  V )  ->  ( O `  ( ( cls `  J ) `  S ) )  =  ( O `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1443    e. wcel 1886   {cab 2436   A.wral 2736   {crab 2740   _Vcvv 3044    i^i cin 3402    C_ wss 3403   {csn 3967   U.cuni 4197    |-> cmpt 4460   `'ccnv 4832   "cima 4836   ` cfv 5581  (class class class)co 6288   CCcc 9534   0cc0 9536   Basecbs 15114  Scalarcsca 15186   .icip 15188   TopOpenctopn 15313   0gc0g 15331  ℂfldccnfld 18963   ocvcocv 19216   Topctop 19910  TopOnctopon 19911   TopSpctps 19912   Clsdccld 20024   clsccl 20026    Cn ccn 20233   Hauscha 20317  NrmGrpcngp 21585  CModcclm 22086   CPreHilccph 22137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-om 6690  df-1st 6790  df-2nd 6791  df-supp 6912  df-tpos 6970  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-map 7471  df-ixp 7520  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fsupp 7881  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-mhm 16575  df-submnd 16576  df-grp 16666  df-minusg 16667  df-sbg 16668  df-mulg 16669  df-subg 16807  df-ghm 16874  df-cntz 16964  df-cmn 17425  df-abl 17426  df-mgp 17717  df-ur 17729  df-ring 17775  df-cring 17776  df-oppr 17844  df-dvdsr 17862  df-unit 17863  df-invr 17893  df-dvr 17904  df-rnghom 17936  df-drng 17970  df-subrg 17999  df-staf 18066  df-srng 18067  df-lmod 18086  df-lmhm 18238  df-lvec 18319  df-sra 18388  df-rgmod 18389  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-cnfld 18964  df-phl 19186  df-ipf 19187  df-ocv 19219  df-top 19914  df-bases 19915  df-topon 19916  df-topsp 19917  df-cld 20027  df-cls 20029  df-cn 20236  df-cnp 20237  df-t1 20323  df-haus 20324  df-tx 20570  df-hmeo 20763  df-xms 21328  df-ms 21329  df-tms 21330  df-nm 21590  df-ngp 21591  df-tng 21592  df-nlm 21594  df-clm 22087  df-cph 22139  df-tch 22140
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator