MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsnsg Structured version   Unicode version

Theorem clsnsg 19680
Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
clsnsg  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (NrmSGrp `  G ) )

Proof of Theorem clsnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 15713 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 subgntr.h . . . 4  |-  J  =  ( TopOpen `  G )
32clssubg 19679 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (SubGrp `  G ) )
41, 3sylan2 474 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (SubGrp `  G ) )
5 df-ima 4853 . . . . . . 7  |-  ( ( y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) "
( ( cls `  J
) `  S )
)  =  ran  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  |`  ( ( cls `  J ) `  S ) )
6 eqid 2443 . . . . . . . . . . . . . 14  |-  ( Base `  G )  =  (
Base `  G )
72, 6tgptopon 19653 . . . . . . . . . . . . 13  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
87ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  J  e.  (TopOn `  ( Base `  G ) ) )
9 topontop 18531 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
108, 9syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  J  e.  Top )
111ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  S  e.  (SubGrp `  G )
)
126subgss 15682 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1311, 12syl 16 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  S  C_  ( Base `  G
) )
14 toponuni 18532 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
158, 14syl 16 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ( Base `  G )  = 
U. J )
1613, 15sseqtrd 3392 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  S  C_ 
U. J )
17 eqid 2443 . . . . . . . . . . . 12  |-  U. J  =  U. J
1817clsss3 18663 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
1910, 16, 18syl2anc 661 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
2019, 15sseqtr4d 3393 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( cls `  J
) `  S )  C_  ( Base `  G
) )
21 resmpt 5156 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  ( Base `  G
)  ->  ( (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  ( ( cls `  J
) `  S )
)  =  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
2220, 21syl 16 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  |`  ( ( cls `  J ) `  S ) )  =  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) )
2322rneqd 5067 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  ( ( cls `  J
) `  S )
)  =  ran  (
y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) )
245, 23syl5eq 2487 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " ( ( cls `  J ) `
 S ) )  =  ran  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
25 eqid 2443 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
26 tgptmd 19650 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
2726ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  G  e. TopMnd )
28 simpr 461 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  x  e.  ( Base `  G
) )
298, 8, 28cnmptc 19235 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  x )  e.  ( J  Cn  J ) )
308cnmptid 19234 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  y )  e.  ( J  Cn  J ) )
312, 25, 27, 8, 29, 30cnmpt1plusg 19658 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )  e.  ( J  Cn  J ) )
32 eqid 2443 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
332, 32tgpsubcn 19661 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
3433ad2antrr 725 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ( -g `  G )  e.  ( ( J  tX  J )  Cn  J
) )
358, 31, 29, 34cnmpt12f 19239 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  e.  ( J  Cn  J
) )
3617cnclsi 18876 . . . . . . . 8  |-  ( ( ( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  e.  ( J  Cn  J )  /\  S  C_  U. J )  ->  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) "
( ( cls `  J
) `  S )
)  C_  ( ( cls `  J ) `  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S ) ) )
3735, 16, 36syl2anc 661 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " ( ( cls `  J ) `
 S ) ) 
C_  ( ( cls `  J ) `  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " S ) ) )
38 df-ima 4853 . . . . . . . . . 10  |-  ( ( y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S )  =  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  S )
39 resmpt 5156 . . . . . . . . . . . 12  |-  ( S 
C_  ( Base `  G
)  ->  ( (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  S )  =  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) )
4013, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  |`  S )  =  ( y  e.  S  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
4140rneqd 5067 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  S )  =  ran  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) )
4238, 41syl5eq 2487 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " S )  =  ran  ( y  e.  S  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
436, 25, 32nsgconj 15714 . . . . . . . . . . . . 13  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  x  e.  ( Base `  G )  /\  y  e.  S
)  ->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  S
)
44433expa 1187 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (NrmSGrp `  G )  /\  x  e.  ( Base `  G
) )  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  S )
4544adantlll 717 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (NrmSGrp `  G ) )  /\  x  e.  ( Base `  G ) )  /\  y  e.  S )  ->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  S )
46 eqid 2443 . . . . . . . . . . 11  |-  ( y  e.  S  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  =  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )
4745, 46fmptd 5867 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : S --> S )
48 frn 5565 . . . . . . . . . 10  |-  ( ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : S --> S  ->  ran  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  S )
4947, 48syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  S )
5042, 49eqsstrd 3390 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " S ) 
C_  S )
5117clsss 18658 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S )  C_  S
)  ->  ( ( cls `  J ) `  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S ) )  C_  ( ( cls `  J
) `  S )
)
5210, 16, 50, 51syl3anc 1218 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( cls `  J
) `  ( (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S ) )  C_  ( ( cls `  J
) `  S )
)
5337, 52sstrd 3366 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " ( ( cls `  J ) `
 S ) ) 
C_  ( ( cls `  J ) `  S
) )
5424, 53eqsstr3d 3391 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  ( ( cls `  J ) `  S ) )
55 ovex 6116 . . . . . . 7  |-  ( ( x ( +g  `  G
) y ) (
-g `  G )
x )  e.  _V
56 eqid 2443 . . . . . . 7  |-  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  =  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )
5755, 56fnmpti 5539 . . . . . 6  |-  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  Fn  ( ( cls `  J
) `  S )
58 df-f 5422 . . . . . 6  |-  ( ( y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
)  <->  ( ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  Fn  ( ( cls `  J
) `  S )  /\  ran  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  ( ( cls `  J ) `  S ) ) )
5957, 58mpbiran 909 . . . . 5  |-  ( ( y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
)  <->  ran  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  ( ( cls `  J ) `  S ) )
6054, 59sylibr 212 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
) )
6156fmpt 5864 . . . 4  |-  ( A. y  e.  ( ( cls `  J ) `  S ) ( ( x ( +g  `  G
) y ) (
-g `  G )
x )  e.  ( ( cls `  J
) `  S )  <->  ( y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
) )
6260, 61sylibr 212 . . 3  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  A. y  e.  ( ( cls `  J
) `  S )
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  ( ( cls `  J ) `  S
) )
6362ralrimiva 2799 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  A. x  e.  ( Base `  G
) A. y  e.  ( ( cls `  J
) `  S )
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  ( ( cls `  J ) `  S
) )
646, 25, 32isnsg3 15715 . 2  |-  ( ( ( cls `  J
) `  S )  e.  (NrmSGrp `  G )  <->  ( ( ( cls `  J
) `  S )  e.  (SubGrp `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  (
( cls `  J
) `  S )
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  ( ( cls `  J ) `  S
) ) )
654, 63, 64sylanbrc 664 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (NrmSGrp `  G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715    C_ wss 3328   U.cuni 4091    e. cmpt 4350   ran crn 4841    |` cres 4842   "cima 4843    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   Basecbs 14174   +g cplusg 14238   TopOpenctopn 14360   -gcsg 15413  SubGrpcsubg 15675  NrmSGrpcnsg 15676   Topctop 18498  TopOnctopon 18499   clsccl 18622    Cn ccn 18828    tX ctx 19133  TopMndctmd 19641   TopGrpctgp 19642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-er 7101  df-map 7216  df-en 7311  df-dom 7312  df-sdom 7313  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-nn 10323  df-2 10380  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-0g 14380  df-topgen 14382  df-mnd 15415  df-plusf 15416  df-grp 15545  df-minusg 15546  df-sbg 15547  df-subg 15678  df-nsg 15679  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-cn 18831  df-cnp 18832  df-tx 19135  df-tmd 19643  df-tgp 19644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator